www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differenzialrechnung" - Kettenregel
Kettenregel < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kettenregel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:30 So 11.06.2006
Autor: pebbles

Hallo zusammen,

ich hoffe ihr könnt einer verzweifelten Mathenull weiterhelfen ;)

Ich habe leider durch eine Grippe die letzten 3 Wochen des Matheunterrichts an meiner Schule verpasst, das letzte was ich mitbekommen und auch halbwegs verstanden habe war das Thema Kurvendiskussion.
Nun haben wir soweit ich weiß in den letzten Wochen zwar immer noch Kurvendiskussionen durchgeführt, aber diesmal unter Anwendung der Kettenregel.
So und nun mein Problem: Für eine vollständige Kurvendiskussion braucht man ja bekanntlich alle 3 Ableitungen einer Funktion, zur Kettenregel kenne ich aber bis jetzt nur eine, nämlich:

(x) = u(v(x))

f’(x) = u’(v(x)) • v’(x)

Damit komme ich wohl bei einer Kurvendiskussion nicht weit. Kann mir jemand die 2. und 3. Ableitung der Kettenregel sagen? Oder gibt es überhaupt keine und ich muss die Aufgaben völlig anders lösen?

%-)

Habt ihr vielleicht sogar Beispiele für eine Kurvendiskussion mit Verwendung der Kettenregel?

Danke schon mal, wäre toll wenn jemand meine Gehirnwindungen mit einer für Doofe verständlichen Antwort entwirren könnte ;)




Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
Kettenregel: Antwort
Status: (Antwort) fertig Status 
Datum: 18:46 So 11.06.2006
Autor: Arkus

hallo :)

> Hallo zusammen,
>  
> ich hoffe ihr könnt einer verzweifelten Mathenull
> weiterhelfen ;)
>  
> Ich habe leider durch eine Grippe die letzten 3 Wochen des
> Matheunterrichts an meiner Schule verpasst, das letzte was
> ich mitbekommen und auch halbwegs verstanden habe war das
> Thema Kurvendiskussion.
> Nun haben wir soweit ich weiß in den letzten Wochen zwar
> immer noch Kurvendiskussionen durchgeführt, aber diesmal
> unter Anwendung der Kettenregel.
>  So und nun mein Problem: Für eine vollständige
> Kurvendiskussion braucht man ja bekanntlich alle 3
> Ableitungen einer Funktion, zur Kettenregel kenne ich aber
> bis jetzt nur eine, nämlich:
>  
> (x) = u(v(x))
>  
> f’(x) = u’(v(x)) • v’(x)

Das ist die allgemeine Definition der Kettenregel.

>  
> Damit komme ich wohl bei einer Kurvendiskussion nicht weit.
> Kann mir jemand die 2. und 3. Ableitung der Kettenregel
> sagen? Oder gibt es überhaupt keine und ich muss die
> Aufgaben völlig anders lösen?

Was meinst du mit einer 2. und 3. Ableitung der Kettenregel? Die Kettenregel ist doch nur ein Hilfmittel um eine Funktion abzuleiten und die 1. , 2. ,3 . , n. Ableitung zu bilden. Also das was du beschreibst gibt es so formal nicht.

Welche Aufgabe meinst du denn? Hast du eine spezielle Funktion, als Beispiel?

>
> %-)
>  
> Habt ihr vielleicht sogar Beispiele für eine
> Kurvendiskussion mit Verwendung der Kettenregel?

Klar :)

[mm] f(x)=(2+4x)^3 [/mm]

Um das Abzuleiten verwendest du die Kettenregel:

Dein u(x) ist die äußere Funktion mit [mm] (...)^3 [/mm]

Dein v(x) ist die innere Funktion mit 2+4x

Nun wendest du sturr die obrige Regel an. Leite erst die äußere Funktion, also die Klammer ab:

[mm] $u(x)=(...)^3$ [/mm] -> $u'(x)=3 [mm] \cdot (...)^2$ [/mm] (Potenzregel)

und multipliziere dies mit der inneren Ableitung:

$v(x)=2+4x$ -> $v'(x)=4$

Du erhälst:

$f'(x)=3 [mm] \cdot (2+4x)^2 \cdot [/mm] 4$ -> $f'(x)=12 [mm] \cdot (2+4x)^2$ [/mm]

Diese Regel braucht man überall, wo verkettete Funktionen vorliegen :)

>  
> Danke schon mal, wäre toll wenn jemand meine
> Gehirnwindungen mit einer für Doofe verständlichen Antwort
> entwirren könnte ;)
>  
>
>
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt

MfG Arkus

Bezug
                
Bezug
Kettenregel: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:06 So 11.06.2006
Autor: pebbles

Achso, dann hätten wir also schonmal den ersten gravierenden Denkfehler meinerseits gefunden ;)

Habe nur verständnislos auf die Formel gestarrt und gedacht wenn da ein f' steht muss es doch auch ein f'' und f''' geben  ;)

Werde dann jetzt mal anhand des Beispiels meine grauen Zellen anstrengen und versuchen irgendwie auf eine akzeptable Lösung zu kommen.

Vielen Dank jedenfalls, ich schrei dann wenn ich nicht weiterkomme (bestimmt, Mathe ist halt nicht so ganz meins) ;)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de