www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differenzialrechnung" - Kettenregel u.a.
Kettenregel u.a. < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kettenregel u.a.: Ein weiteres Bsp
Status: (Frage) beantwortet Status 
Datum: 01:59 Sa 18.08.2007
Autor: aliq

Aufgabe
[mm]y= (2x^2+1)*\wurzel{7-3x}[/mm]

Hallo,
ich habe (wie so oft) eine Frage zur Differentialrechnung, um genau zu sein geht es um die Kettenregel.. jedenfalls das oben genannte Bsp habe ich einfach mal so angefangen:
[mm]y= (2x^2+1)*\wurzel{7-3x}[/mm]

[mm]y'= 4x*(7-3x)^{1/2}+(2x^2+1)*\bruch{1}{2}*(7-3x)^{-1/2}*(-3)[/mm]

daraufhin habe ich es etwas vereinfacht bzw. versucht (allerdings weiss ich nicht ob da schon ein fehler ist oder nicht) jedenfalls:
[mm]y'= \bruch{4x*(7-3x)^{1/2}-6x^2-3}{2*(7-3x)^{1/2}}[/mm]

soo falls das stimmen sollte bin ich natuerlich froh, falls nicht wuerde ich mich freuen wenn es jemand verbessern koennte, aber meine eigentliche frage ist wie ich diese ganze gleichung wie sie jetzt so da steht auf das ergebnis:
[mm]y'= \bruch{(-30x^2+56x-3)}{2*(7-3x)^{1/2}}[/mm]

freue mich ueber jegliche art von hilfe,
danke schonmal
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Kettenregel u.a.: Antwort
Status: (Antwort) fertig Status 
Datum: 02:22 Sa 18.08.2007
Autor: vagnerlove

Hallo


> [mm]y= (2x^2+1)*\wurzel{7-3x}[/mm]
>  Hallo,
>  ich habe (wie so oft) eine Frage zur Differentialrechnung,
> um genau zu sein geht es um die Kettenregel.. jedenfalls
> das oben genannte Bsp habe ich einfach mal so angefangen:
>  [mm]y= (2x^2+1)*\wurzel{7-3x}[/mm]
>  
> [mm]y'= 4x*(7-3x)^{1/2}+(2x^2+1)*\bruch{1}{2}*(7-3x)^{-1/2}*(-3)[/mm]
>  

Das sieht schon mal sehr gut aus.

> daraufhin habe ich es etwas vereinfacht bzw. versucht
> (allerdings weiss ich nicht ob da schon ein fehler ist oder
> nicht) jedenfalls:
>  [mm]y'= \bruch{4x*(7-3x)^{1/2}-6x^2-3}{2*(7-3x)^{1/2}}[/mm]
>  

Ich befürchte, dass dies nicht stimmt.
Wie kommst du auf so einen komplizierten Term im Zähler?

Wenn du das ganz ordentlich mit Brüchen und Wurzeln schreibst, hast du 2 Brüche, die du auf den Hauptnenner,  [mm]{2*(7-3x)^{1/2}}[/mm], bringen musst.
Also musst du den Zähler des ersten Bruches mit dem Nenner des zweiten Bruches erweitern, dadurch kommt auch die [mm](7-3x)^{1/2)[/mm] weg.

Ich erhalte dann im Zähler das hier:
8x(7-3x)-3(2x²+1)


> soo falls das stimmen sollte bin ich natuerlich froh, falls
> nicht wuerde ich mich freuen wenn es jemand verbessern
> koennte, aber meine eigentliche frage ist wie ich diese
> ganze gleichung wie sie jetzt so da steht auf das
> ergebnis:
>  [mm]y'= \bruch{(-30x^2+56x-3)}{2*(7-3x)^{1/2}}[/mm]
>  

Wenn du mein Ergebnis ausmultiplizierst müsstes du eigentlich auf  [mm]y'= \bruch{(-30x^2+56x-3)}{2*(7-3x)^{1/2}}[/mm] kommen.

> freue mich ueber jegliche art von hilfe,
>  danke schonmal
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.

Gruß
Reinhold

Bezug
                
Bezug
Kettenregel u.a.: verstehe immer noch nicht ganz
Status: (Frage) beantwortet Status 
Datum: 02:39 Sa 18.08.2007
Autor: aliq

Hallo nochmal, danke erstmal fuer die antwort!
Ich hab es gleich mal versucht nur irgendwie verstehe ich nicht wie genau du auf zwei brueche kommst, bzw ich verstehe nicht wie ich auch zwei brueche kommen soll?
Es tut mir leid fuer diese etwas dumme frage jetzt,aber naja :-)

lg,
alicia


Bezug
                        
Bezug
Kettenregel u.a.: Antwort
Status: (Antwort) fertig Status 
Datum: 02:51 Sa 18.08.2007
Autor: vagnerlove

Hallo

Deine beiden Brüche sind:
[mm] \bruch{4x*\wurzel{7-3x}}{1} [/mm] und
[mm] \bruch{-3*(2x²+1)}{2*\wurzel{7-3x}} [/mm]

Wie kann man denn [mm] x^{-1/2} [/mm] in einem Bruch ausdrücken?

Gruß
Reinhold

Bezug
                                
Bezug
Kettenregel u.a.: Korrekturmitteilung
Status: (Korrektur) richtig (detailiert geprüft) Status 
Datum: 03:03 Sa 18.08.2007
Autor: aliq

Hallo nochmal,
es tut mir leid falls ich Dir umstaende bereitet habe, aber jetzt habe ich es endlich verstanden - hat zwar etwas gedauert aber was soll man tun.
Vielen vielen dank nochmal,

lg,
alicia

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de