www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Zahlentheorie" - Klassenzahl
Klassenzahl < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Klassenzahl: Klassenzahl und Periodenzyklen
Status: (Frage) überfällig Status 
Datum: 05:29 Mi 11.09.2013
Autor: SoWhat

Aufgabe
Die Klassenzahl einer reell-quadratischen Körpererweiterung [mm] $Q_{[\sqrt{D}]}$ [/mm] ist identisch mit der Anzahl der auftretenden verschiedenen Perioden in [mm] $Q_{[\sqrt{D}]}$. [/mm]

Hallo!
Ich stehe vor einer Beobachtung, die ich nicht erklären kann.
Sei beispielsweise die Diskriminante D=28, so tritt eine Periode für die Elemente dieser Körpererweiterung von [mm] $\IQ$ [/mm] auf. Die Klassenzahl beträgt auch 1. Dies lässt sich für (zumindest sehr sehr viele) Körpererweiterungen dieser Art D= 0 mod4 und D-1 = 0 mod4, feststellen.
Wie könnte man beweisen, dass die Anzahl  von auftretenden, verschiedenen Perioden, für solche Diskriminanten, mit der Klassenzahl übereinstimmt?


(Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.)

        
Bezug
Klassenzahl: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 06:53 Do 12.09.2013
Autor: felixf

Moin!

> Die Klassenzahl einer reell-quadratischen
> Körpererweiterung [mm]Q_{[\sqrt{D}]}[/mm] ist identisch mit der
> Anzahl der auftretenden verschiedenen Perioden in
> [mm]Q_{[\sqrt{D}]}[/mm].

Was verstehst du unter "Perioden in [mm] $\IQ[\sqrt{D}]$"? [/mm]

LG Felix


Bezug
                
Bezug
Klassenzahl: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:56 Do 12.09.2013
Autor: SoWhat

Diskriminante D fest, ganze positive Zahl. Erlaubte Diskriminanten: D [mm] \mod [/mm] 4=0 und (D-1) [mm] \mod4=0. [/mm]
Radikant R=4*D, keine Quadratzahl.

Betrachte die reell-quadratischen Irrationalzahlen der [mm] $Q_{[\sqrt{28}]}$ [/mm] und davon (sogar) nur die positiven und deren regelmäßige Kettenbruchentwicklung. da reell-quadratische Irrationalzahlen (Euler-Lagrange)--> Periodisch.
Nun ist den reg. KB. dieser Elementen der reinperiodische Anteil [mm] $[\overline{1;1,1,4}]$ [/mm] gemein. (bei bedarf muss die Periode künstlich verlängert werden).
Sie sind alle äquivalent. (Perron)
Es gibt demnach eine äquivalenzklasse in [mm] $Q_{\sqrt{28}}$. [/mm]
Anders formuliert ist also meine Behauptung, dass die Anzahl der Äquivalenzklassen (in bezug auf KB) in [mm] $Q_{[\sqrt{D}]}$ [/mm] der Klassenzahl der Körpererweiterung [mm] $Q_{[\sqrt{D}]}$ [/mm] entspricht.

Bezug
        
Bezug
Klassenzahl: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 06:20 Fr 13.09.2013
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de