www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Zahlentheorie" - Kleine Frage
Kleine Frage < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kleine Frage: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:01 Fr 22.10.2010
Autor: piccolo1986

Hey, ich hab mal ne Frage, also es gilt:
[mm] x\equiv [/mm] r(mod m) und [mm] x\equiv [/mm] s(mod n)
Zudem gelte ggT(r,m)=1 und ggT(s,n)=1

Hieraus soll folgen ggT(x,m*n)=1

Kann ich dies einfach daraus folgern, dass ich weiss, dass wenn ggT(a,m)=ggT(b,m)=1 daraus folgt: ggT(ab,m)=1. Bzw. muss ich dazu noch erwähnen, dass ich aus den obigen beiden Kongruenzen quasi r und s als gleich ansehen kann?

mfg
piccolo

        
Bezug
Kleine Frage: Antwort
Status: (Antwort) fertig Status 
Datum: 22:07 Fr 22.10.2010
Autor: abakus


> Hey, ich hab mal ne Frage, also es gilt:
>  [mm]x\equiv[/mm] r(mod m) und [mm]x\equiv[/mm] s(mod n)
>  Zudem gelte ggT(r,m)=1 und ggT(s,n)=1
>  
> Hieraus soll folgen ggT(x,m*n)=1
>  
> Kann ich dies einfach daraus folgern, dass ich weiss, dass
> wenn ggT(a,m)=ggT(b,m)=1 daraus folgt: ggT(ab,m)=1. Bzw.
> muss ich dazu noch erwähnen, dass ich aus den obigen
> beiden Kongruenzen quasi r und s als gleich ansehen kann?

Nein, das kannst du nicht. Beispielsweise gilt 19 [mm] \equiv [/mm] 4 mod 5, aber 19 [mm] \equiv [/mm] 1 mod 6.
Ich würde mal folgendes versuchen:
Aus   [mm]x\equiv[/mm] r(mod m)  folgt x=a*m+r.
Aus   [mm]x\equiv[/mm] s(mod n) folgt x= b*n+s.
Dann gilt z.B. ggT(x,m*n)=ggT(a*m+r,m*n). Dieser ggT kann schon mal NICHT m sein...
Gruß Abakus

>  
> mfg
> piccolo


Bezug
                
Bezug
Kleine Frage: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:44 Sa 23.10.2010
Autor: piccolo1986


> > Hey, ich hab mal ne Frage, also es gilt:
>  >  [mm]x\equiv[/mm] r(mod m) und [mm]x\equiv[/mm] s(mod n)
>  >  Zudem gelte ggT(r,m)=1 und ggT(s,n)=1
>  >  
> > Hieraus soll folgen ggT(x,m*n)=1
>  >  
> > Kann ich dies einfach daraus folgern, dass ich weiss, dass
> > wenn ggT(a,m)=ggT(b,m)=1 daraus folgt: ggT(ab,m)=1. Bzw.
> > muss ich dazu noch erwähnen, dass ich aus den obigen
> > beiden Kongruenzen quasi r und s als gleich ansehen kann?
>  Nein, das kannst du nicht. Beispielsweise gilt 19 [mm]\equiv[/mm] 4
> mod 5, aber 19 [mm]\equiv[/mm] 1 mod 6.
>  Ich würde mal folgendes versuchen:
>  Aus   [mm]x\equiv[/mm] r(mod m)  folgt x=a*m+r.
>  Aus   [mm]x\equiv[/mm] s(mod n) folgt x= b*n+s.
>  Dann gilt z.B. ggT(x,m*n)=ggT(a*m+r,m*n). Dieser ggT kann

Hey, also ich hab jetzt nochmal ein bisschen rumprobiert und hab mir folgendes überlegt, wie du ja schon sagtest:
Aus   [mm]x\equiv[/mm] r(mod m)  folgt x=a*m+r.
Zudem gilt: aus ggT(r,m)=1 folgt, das ganze Zahlen d und e existieren müssen, sodass gilt:
1=d*r+e*m   Hier setze ich jetzt r=x-a*m ein und durch umformen erhalte ich dann:
1=d*x-m*(a*d+e) Dabei gilt jetzt, dass d und (a*d+e) ganze Zahlen sind und somit ist diese Gleichung äquivalent zu:
ggT(x,m)=1.
Analog zeige ich ggT(x,n)=1 Woraus dann insgesamt folgt: ggT(x,m*n)=1.

Ist das soweit korrekt?

mfg
piccolo

> schon mal NICHT m sein...
>  Gruß Abakus
>  >  
> > mfg
> > piccolo
>  


Bezug
                        
Bezug
Kleine Frage: Antwort
Status: (Antwort) fertig Status 
Datum: 10:36 Sa 23.10.2010
Autor: reverend

Hallo piccolo,

ja, das ist korrekt und also eine mögliche Lösung.

Grüße
reverend


Bezug
                                
Bezug
Kleine Frage: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:00 Sa 23.10.2010
Autor: piccolo1986

alles klar, danke

mfg piccolo

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de