www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Logik" - Knobelaufgabe
Knobelaufgabe < Logik < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Logik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Knobelaufgabe: Tipps und Ideen
Status: (Frage) beantwortet Status 
Datum: 16:10 Mo 23.10.2006
Autor: Einradfreakin

Aufgabe
Ich habe 15 Personen die in Dreier-Reihen gehen müssen. Es gibt 7 Möglichkeiten sie so zu gruppieren, dass eine Person nie 2 mal mit jemandem in der Dreier-Reihe ist.
Welche 7 Kombinationen gibt es, wenn man die Personen mit 1-15 bennent?

Habt ihr eine Ahnung, wie man so was logisch herausfindet ohne dass ich jetzt alle Versionen ausprobieren muss?
Ich muss ja darauf achten, dass wenn ich in der ersten Reihe 1, 2, 3 habe, darf die 1 danach nie mehr mit 2, 3 in einer Reihe sein, 2 nicht mehr mit 1, 3 usw...

Danke euch jetzt schon für eure Ideen!!! Bin froh um euch ;) dank der Matheraum-Hilfe habe ich letztes Semester alle Aufgaben lösen können - Musste ich mal noch loswerden!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Knobelaufgabe: Antwort
Status: (Antwort) fertig Status 
Datum: 15:06 Do 26.10.2006
Autor: mathiash

Hallo und guten Tag,

Du suchst also 7 Partitionen von [mm] \{1,\ldots , 15\} [/mm] in 3-elementige Teilmengen so, dass
bei keinen zwei dieser 7 Partitionen zwei Leute [mm] i,j\in\{1,\ldots , 15\} [/mm] in derselben Dreiergruppe sind.

Jede Partition hat 5 Dreiergruppen.

Wenn wir eine Partition [mm] \pi [/mm] von [mm] \{1,\ldots , 15\} [/mm] betrachten und

[mm] \pi_j:=\pi(j) [/mm] sei [mm] (1\leq j\leq [/mm] 15), so betrachten wir dazu die Partition

[mm] \{\pi_1,\pi_2,\pi_3\},\ldots [/mm] , [mm] \{\pi_{13},\pi_{14},\pi_{15}\} [/mm]

Nun versuchen wir, neue Partitionen zu erzeugen, wobei immer

1 in Gruppe 1 bleibt, 4 in 2 , 7 in 3, 10 in 4 und 13 in Gruppe 5
(also die jeweils ersten der Dreiergruppen bleiben in derselben Gruppe).

Die Zweiten und Dritten der Gruppe wandern nun (also   3k+2,3k+3, k=0,1,2,3,4) in andere Gruppen, wobei nicht
3k+2 und 3k+3 in dieselbe Gruppe wandern dürfen.

(1) die Personen 3k+2 wandern eine Gruppe weiter (zyklisch), die Personen 3k+3 zwei Gruppen weiter.

(2) Umgekehrt: 3k+2 wandern zwei Gruppen weiter, 3k+3 eine Gruppe.

Wenn Du nun in diesem Modell systematisch weitere Möglichkeiten des Wanderns auflistest, solltest Du Deine 7
Partitionen finden.

Gruss,

Mathias



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Logik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de