Knotenspannungsverfahren < Elektrotechnik < Ingenieurwiss. < Vorhilfe
|
Aufgabe | [Dateianhang nicht öffentlich]
Knotenspannungsverfahren anwenden |
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Hallo!
Ich schon wieder...
Jetzt versuch ich mich grade am Knotenspannungsverfahren. Und wiedermal haperts an Grundlegendem.
Bei diesem Beispiel hab ich mal das Netzwerk auf den Baum reduziert und versucht die Richtung der ströme einzuzeichnen. Ich hab also 4 Knoten und 6 Zweige, daraus folgen k-1 Gleichungen, als Bezugsknoten hab ich Knoten 4 gewählt:
[Dateianhang nicht öffentlich]
Dann würde ich, wenn ich die richtungen der ströme korrekt wüsste, die Gleichungen aufstellen (In den Knoten fließende Ströme negativ):
K1: -Iz1 - Iz4 + Iz2 = 0
K2: -Iz2 + Iz5 -/+ Iz3 = 0
K3: Iz1 - Iz6 -/+ Iz3 = 0
Danach dann Iz1 = [mm] \bruch{Uq1}{R_{1}}, [/mm] Iz2 = [mm] \bruch{U2}{R_{2}}, [/mm] Iz3 = [mm] \bruch{U3}{R_{3}}, [/mm] Iz4 = [mm] \bruch{U4}{R_{4}}, [/mm] Iz6 = [mm] \bruch{Uq6}{R_{6}}
[/mm]
Dann jede Spannung durch die Knotenspannungen ausdrücken, in die Gleichungen einsetzen und dann in eine Matrix einsetzen damit ich die Ergebnisse bekomme.
Wie kann ich feststellen in welche Richtung der Strom an einem Knoten fliesst? Hab ich den rest wenigstens richtig gemacht?
Für Hilfe wäre ich sehr dankbar!
Dateianhänge: Anhang Nr. 1 (Typ: jpg) [nicht öffentlich] Anhang Nr. 2 (Typ: jpg) [nicht öffentlich]
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 18:20 Di 16.06.2009 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 19:50 Di 16.06.2009 | Autor: | isi1 |
So schnell schießen die Preußen auch wieder nicht, Wiesel.
Man sollte da nicht soviel nachdenken - da macht man nur Fehler.
Ich halte mich da lieber an folgendes Schema:
Beispiel Kreisstromverfahren:
[Dateianhang nicht öffentlich]
Die Regeln zum Kreisstromverfahren sind:
a) die ik1...ik3 Schleifen einzeichnen oder sich denken
b) für jede dieser ik-Maschen eine Gleichung aufstellen
b1) die Widerstände mit dem eigenen ik sind positiv
b2) die Widerstände mit den Nachbar-ik sind negativ
b3) Spannungsquellen mit gleichlaufendem Pfeil sind negativ und werden rechts eingetragen
b4) Spannungsquellen mit entgegengesetztem Pfeil sind positiv und werden rechts eingetragen
c) Die Auflösung der Gleichung nach Gauß-Jordan ergibt die ik1...ik3
c1) wenn man die Zahlen einsetzt, löst Brünner
c2) alternativ - auch mit Buchstaben löst TI89 mit rref()
c3) natürlich kann man auch von Hand auflösen
Beachte: Die ganze Schreibarbeit ist das folgende Codefenster(!)1: | R1+R5 -R1 0 U
| 2: | -R1 R1+R2+R4 -R2 0
| 3: | 0 -R2 R2+R3 0 | Gauß-Jordan ergibt ik1, ik2, ik3
i0; i1; i3; i4; i5; iges; U1; Ua;
i0 = ik1
i1 = ik1-ik2
i2 = ik2-ik3
i3 = ik3
i4 = ik2
i5 = ik1
U1 = i1*R1
Ua = i3*R3
----------------------------------------------------------------
Ergänzend dazu das Knotenpotentialverfahren, es ist dual zum Kreisstromverfahren, d.h.
Strom ---> Spannung
Widerstand ---> Leitwert
Masche ----> Knoten
Knoten ---> Masche
Spannungquelle ----> Stromquelle
Ohmsches Gesetz: U = R * I ---> I = G * U
Die Regeln für das Knotenpotentialverfahren sind:
a) die φ1...φ3 Knotenpotentiale einzeichnen oder sich denken
b) für jede dieser φ-Knoten eine Gleichung aufstellen
b1) die Leitwerte mit dem eigenen φ sind positiv
b2) die Leitwerte mit den Nachbar-φ sind negativ
b3) Stromquellen mit Zufluss sind positiv und werden rechts eingetragen
b4) Abfluss natürlich negativ
c) Die Auflösung der Gleichung nach Gauß-Jordan ergibt die φ1...φ3
c1) wenn man die Zahlen einsetzt, löst Brünner
c2) alternativ - auch mit Buchstaben löst z.B. TI89 mit rref()
c3) Man kann natürlich auch 'von Hand' lösen
Dateianhänge: Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
|
|
|
|
|
Danke für diese Alternativlösung!
Ich bin mittlerweile schon auf ein paar fehler in meiner version draufgekommen. Da hilft nur Übung, Übung und Übung.
|
|
|
|