www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gruppe, Ring, Körper" - Kochrezept für Norm und Spur
Kochrezept für Norm und Spur < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kochrezept für Norm und Spur: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 10:12 Sa 09.01.2010
Autor: Crispy

Aufgabe 1
Sei K ein Körper [mm]char(K) \not= 2 [/mm], [mm]d \in K [/mm] kein Quadrat.
Es sei [mm]L=K ( \sqrt{d} ) [/mm].

Berechne [mm]Sp_{L/K}(a+b\sqrt{d})[/mm] und [mm]N_{L/K} ( a+b\sqrt{d} ) [/mm] für [mm]a,b \in K[/mm].

Aufgabe 2
Sei K ein Körper [mm]char(K) \not= 3 [/mm], [mm]e \in K [/mm] kein Kubus.
Es sei [mm]F=K ( \sqrt[3]{e} ) [/mm].

Berechne [mm]Sp_{F/K}(a+b\sqrt[3]{e}+c\sqrt[3]{e}^2)[/mm] und [mm]N_{F/K}(a+b\sqrt[3]{e}+c\sqrt[3]{e}^2)[/mm] für [mm]a,b,c \in K[/mm].

Hallo,
ich bräuchte eine Art Kochrezept für die Berechnung von Norm und Spur zur o.g. Aufgabe.
Erstmal die 1. Aufgabe.
Ich weiß zunächst, dass die Körpererweiterung endlich ist.
[mm][L:K]=n=2[/mm] und [mm]a+b\sqrt{d} \in L[/mm].

[mm]Sp_{L/K}(a+b\sqrt{d})=n\cdot (a+b\sqrt{d})=2\cdot (a+b\sqrt{d})[/mm]
[mm]N_{L/K} ( a+b\sqrt{d} ) =( a+b\sqrt{d} )^n=( a+b\sqrt{d} )^2[/mm]

Stimmt das so bislang?

Besten Dank & viele Grüße,
Crispy

        
Bezug
Kochrezept für Norm und Spur: Antwort
Status: (Antwort) fertig Status 
Datum: 11:32 Sa 09.01.2010
Autor: felixf

Hallo Crispy!

> Sei K ein Körper [mm]char(K) \not= 2 [/mm], [mm]d \in K[/mm] kein Quadrat.
>  Es sei [mm]L=K ( \sqrt{d} ) [/mm].
>  
> Berechne [mm]Sp_{L/K}(a+b\sqrt{d})[/mm] und [mm]N_{L/K} ( a+b\sqrt{d} )[/mm]
> für [mm]a,b \in K[/mm].
>  Sei K ein Körper [mm]char(K) \not= 3 [/mm], [mm]e \in K[/mm]
> kein Kubus.
>  Es sei [mm]F=K ( \sqrt[3]{e} ) [/mm].
>  
> Berechne [mm]Sp_{F/K}(a+b\sqrt[3]{e}+c\sqrt[3]{e}^2)[/mm] und
> [mm]N_{F/K}(a+b\sqrt[3]{e}+c\sqrt[3]{e}^2)[/mm] für [mm]a,b,c \in K[/mm].
>  
> Hallo,
>  ich bräuchte eine Art Kochrezept für die Berechnung von
> Norm und Spur zur o.g. Aufgabe.

Na, wie sind Norm und Spur denn bei euch definiert? Versuche das doch hier mal anzuwenden.

Und wenn du es nicht hinbekommst, schreib wenigstens die Definition hier her!

>  Erstmal die 1. Aufgabe.
>  Ich weiß zunächst, dass die Körpererweiterung endlich
> ist.
>  [mm][L:K]=n=2[/mm] und [mm]a+b\sqrt{d} \in L[/mm].

Ja.

> [mm]Sp_{L/K}(a+b\sqrt{d})=n\cdot (a+b\sqrt{d})=2\cdot (a+b\sqrt{d})[/mm]
>  
> [mm]N_{L/K} ( a+b\sqrt{d} ) =( a+b\sqrt{d} )^n=( a+b\sqrt{d} )^2[/mm]
>  
> Stimmt das so bislang?

Nein. (Nur wenn $b = 0$ ist.) Warum sollte es auch?

LG Felix


Bezug
                
Bezug
Kochrezept für Norm und Spur: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:06 Sa 09.01.2010
Autor: Crispy

Hallo Felix,
herzlichen Dank für Deine Antwort

Definition:
Sei [mm] g= a + b \wurzel{d}[/mm]

[mm]Sp_{L/K}(g):= \mbox{Spur } \varphi_g [/mm] und [mm]N_{L/K}(g):= \mbox{det } \varphi_g [/mm]
[mm]\varphi_g: L \to L [/mm]   [mm]x \mapsto gx [/mm]

Matrixdarstellung von [mm]\varphi_g[/mm]: [mm] \pmat{ a & bd \\ b & a } [/mm] (mit K-Basis 1 und [mm]\wurzel{d} [/mm] )

[mm]Sp_{L/K}(g):= a+a = 2a [/mm]  [mm]N_{L/K}(g):= a \cdot a - b \cdot bd= a^2-b^2d [/mm]

Ich hoffe ich habe es jetzt verstanden.
Gruss,
Crispy

Bezug
                        
Bezug
Kochrezept für Norm und Spur: Antwort
Status: (Antwort) fertig Status 
Datum: 12:13 Sa 09.01.2010
Autor: felixf

Hallo Crispy,

> Definition:
>  Sei [mm]g= a + b \wurzel{d}[/mm]
>  
> [mm]Sp_{L/K}(g):= \mbox{Spur } \varphi_g[/mm] und [mm]N_{L/K}(g):= \mbox{det } \varphi_g[/mm]
>  
> [mm]\varphi_g: L \to L[/mm]   [mm]x \mapsto gx[/mm]
>  
> Matrixdarstellung von [mm]\varphi_g[/mm]: [mm]\pmat{ a & bd \\ b & a }[/mm]
> (mit K-Basis 1 und [mm]\wurzel{d}[/mm] )
>  
> [mm]Sp_{L/K}(g):= a+a = 2a[/mm]  [mm]N_{L/K}(g):= a \cdot a - b \cdot bd= a^2-b^2d[/mm]
>  
> Ich hoffe ich habe es jetzt verstanden.

ja, jetzt stimmt es.

LG Felix


Bezug
                                
Bezug
Kochrezept für Norm und Spur: Dankeschön
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:27 Sa 09.01.2010
Autor: Crispy

Wunderbar.
Herzlichen Dank!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de