www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gruppe, Ring, Körper" - Körper
Körper < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Körper: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:06 Di 17.04.2007
Autor: aineias

Aufgabe
Es sei (K,+,*) eine endliche Menge K mit zwei Verknüpfungen + und *, die den Körperaxiomen genügen, aber statt inverses Element der Multiplikation folgendes Axiom erfüllen:
Für a,b [mm] \in [/mm] K [mm] \backslash [/mm] {0} gilt auch a*b [mm] \in [/mm] K [mm] \backslash [/mm] {0}.
Zeigen Sie, dass (K,+,*) ein Körper ist.
(man betrachte f: K [mm] \backslash [/mm] {0} ---> K [mm] \backslash [/mm] {0}, b ---> a*b

hallo,
kann mir jemand hierbei bitte helfen...
ich verstehe nicht, wie ich diese aufgabe angehen soll. soll mir einfach eine endlich menge ausdenken und dann die körperaxiome durchgehen???

        
Bezug
Körper: injektive Abbildung
Status: (Antwort) fertig Status 
Datum: 21:58 Di 17.04.2007
Autor: comix

Hier gibt es zwei entscheidende Voraussetzungen:
1. Die Menge K ist endlich.
2. Das "neue" Axiom sagt aus, dass das Produkt zweier Elemente ungleich 0 wieder ungleich 0 ist .

Wenn Du jetzt zeigen kannst, dass die angegebene Abbildung bijektiv ist (hier reicht z.B. injektiv, surjektiv folgt dann wegen der Endlichkeit), dann kannst Du das "fehlende" Axiom (Existenz des Inversen) herleiten.

(für injektiv z.z.: [mm] f(x_1) [/mm] = [mm] f(x_2) \Rightarrow x_1 [/mm] = [mm] x_2. [/mm] Bilde die Differenz und klammer aus)

Bezug
                
Bezug
Körper: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:32 Mi 18.04.2007
Autor: aineias

soll ich mir dann irgendwelche elemente, die in der endlichen menge enthalten sind ausdenken und damit die bijektivität beweisen?

Bezug
                        
Bezug
Körper: Beweisplan
Status: (Antwort) fertig Status 
Datum: 12:15 Mi 18.04.2007
Autor: comix

Du brauchst Dir keine Elemente auszudenken.

Ziel: Beweis des Axioms: Zu jedem x [mm] \in [/mm] K [mm] \setminus [/mm] {0} gibt es ein x' mit: x*x'=1.

Vorgehensweise: Aus dem angegebenen Axiom folgt, dass es Abbildungen gibt (a [mm] \not= [/mm] 0):

[mm] f_a: [/mm] K [mm] \setminus [/mm] {0} [mm] \to [/mm] K [mm] \setminus [/mm] {0}, b [mm] \mapsto [/mm] a*b

1. Schritt: Zeige, dass [mm] f_a [/mm] bijektiv ist
2. Schritt: Dann folgt: Zu jedem x [mm] \in [/mm] K [mm] \setminus [/mm] {0} gibt es ein bijektives [mm] f_x. [/mm] Da [mm] f_x [/mm] bijektiv ist, kommt auch 1 als Bild vor. Dasjenige b mit x*b=1 ist das inverse Element.

Zu Schritt 1: f(b) = f(b') [mm] \Rightarrow [/mm] f(b) - f(b') = 0 [mm] \Rightarrow [/mm] a*b - a*b' = 0 [mm] \Rightarrow [/mm] a*(b-b') = 0.

Was wissen wir jetzt über dieses Produkt?
a [mm] \not= [/mm] 0
Was folgt für b-b' ?
...

Da [mm] f_a [/mm] injektiv ist, ist [mm] f_a [/mm] auch surjektiv (K ist endliche Menge).

Siehst Du den Weg jetzt klarer?

Bezug
                                
Bezug
Körper: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:47 Mi 18.04.2007
Autor: aineias

erstmla vielen dank comix!!

zu schritt 1: dann müsste doch aus (b-b´) folgern, dass es das inverse zu a ist, stimmts??? somit wäre auch die injektivität beweisen, dann könnte ich doch auch schon hier aufhören, denn somit hätte man das inverse zu a (mit b-b') bewiesen oder fehlt da noch was?

Bezug
                                        
Bezug
Körper: Inverses bzgl. Multiplikation
Status: (Antwort) fertig Status 
Datum: 16:56 Do 19.04.2007
Autor: comix


> erstmla vielen dank comix!!
>  
> zu schritt 1: dann müsste doch aus (b-b´) folgern, dass es
> das inverse zu a ist, stimmts??? somit wäre auch die
> injektivität beweisen, dann könnte ich doch auch schon hier
> aufhören, denn somit hätte man das inverse zu a (mit b-b')
> bewiesen oder fehlt da noch was?

Dein Satz scheint nicht vollständig zu sein. Du schreibst: "aus (b-b') folgern". Es folgt natürlich, dass b-b'=0. Das hat aber zunächst gar nichts damit zu tun, ob es ein Inverses zu b bzgl. der Multiplikation gibt. Da brauchst Du wohl schon noch ein weiteres Argument. Alles klar?

Bezug
                                                
Bezug
Körper: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:47 Fr 20.04.2007
Autor: aineias

ist das richtig, dass man aus (b-b') folgern kann, dass es das inverse von a bzgl. + ist?

Bezug
                                                        
Bezug
Körper: Erläuterung
Status: (Antwort) fertig Status 
Datum: 09:05 So 22.04.2007
Autor: comix

Fast richtig: -b' ist das Inverse zu b bez. +. Aber ich würde es so formulieren:

f(b) = f(b') $ [mm] \Rightarrow [/mm] $ f(b) - f(b') = 0 $ [mm] \Rightarrow [/mm] $ a*b - a*b' = 0 $ [mm] \Rightarrow [/mm] $ a*(b-b') = 0.
Jetzt kann man zunächst folgern, dass (b-b')=0, da a [mm] \not= [/mm] 0. Wäre (b-b') [mm] \not= [/mm] 0, dann auch a*(b-b') [mm] \not=0 [/mm] (wegen des "neuen" Axioms).

Aus b-b'=0 folgt dann natürlich b = b' und damit die Injektivität.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de