www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mathe Klassen 8-10" - Körper
Körper < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Körper: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:00 Di 01.05.2007
Autor: sunbell

Aufgabe
[Dateianhang nicht öffentlich]  

Zu der Aufgabe gehört das Bild.
Aufgabe: Eine Pyramide soll parallel zur Grundfläche so zerschnitten werden, dass das Volumen der teilkörper gleich groß ist. Berrechne die Höhe der beiden teilkörper und die Seitenlängen der Schnittfläche.

Ich versteh irgendwie gar nicht, wie man an die Aufgabe herrangehen muss. Wahrscheinlich muss man sich die Volumenformel einer Pyramide und eines Pyramidenstumpfes vornehmen und irgendwas mit denen machen.
Vielleicht könnt ihr mir ja weiterhelfen...

Dateianhänge:
Anhang Nr. 1 (Typ: png) [nicht öffentlich]
        
Bezug
Körper: Antwort
Status: (Antwort) fertig Status 
Datum: 12:12 Di 01.05.2007
Autor: Event_Horizon

Hallo! Die Formel für den Pyramidenstumpf benötigst du nicht.

Du kannst doch mit der anderen Formel das Volumen dieser Pyramide berechnen.

Wenn du die Pyramide dann zerschneidest, muß doch jedes Teil genau das halbe Volumen haben. Die Frage ist nun, welche Höhe h die kleine Pyramide sein muß, damit sie genau die Hälfte des Volumens hat.

Allerdings ändert sich die Grundfläche ja auch! Für eine Seite der Grundfläche gilt der Strahlensatz. Die Länge der Seite der zwei Pyramiden verhält sich wie die Höhe der Pyramiden: [mm] $\frac{s}{S}=\frac{h}{H}$ [/mm] (Großbuchstaben stehen für die große Pyramide)

Also [mm] $s=\frac{hS}{H}$. [/mm] Damit gilt für dir Grundfläche der kleinen Pyramide:

[mm] $g=s^2=\frac{h^2S^2}{H^2}$ [/mm]

Das Volumen ist dann:

[mm] $v=\frac{h^3S^2}{3H^2}$ [/mm]

Und das muß halb so groß wie das Volumen der großen Pyramide sein. Kannst du h nun berechnen?

Bezug
                
Bezug
Körper: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:48 Di 01.05.2007
Autor: sunbell

irgendwie verstehe ich das immer noch nicht
und wie bist du auf die fläche gekommen?

Bezug
                        
Bezug
Körper: Antwort
Status: (Antwort) fertig Status 
Datum: 19:17 Di 01.05.2007
Autor: Vieta

Hallo sunbell!

Gemäss dem Strahlensatz gilt $ [mm] \frac{s}{S}=\frac{h}{H} [/mm] $, wie schon gesagt wurde. Falls du den Strahlensatz nicht kennen solltest, kannst du ihn hier nachschauen []http://de.wikipedia.org/wiki/Strahlensatz.

Somit gelangst du zur Seitenlänge der "kleinen Pyramide" $ [mm] s=\frac{hS}{H} [/mm] $. Die Grundfläche entspricht dem Quadrat der Seitenlänge, da es ja eine quadratische Grundfläche ist.

Die Formel für das Volumen lautet: v = 1/3*h*s

Nun kannst du s einsetzen, womit du dann zur bereits genannten Formel
$ [mm] v=\frac{h^3S^2}{3H^2} [/mm] $ kommst.

v muss nun noch gleich 1/2 V sein, damit die Bedingungen erfüllt sind. V kannst du mit der Formel fürs Volumen berechnen. Schlussendlich musst du die Formel nur noch nach h auflösen und den Rest einsetzten.

Liebe Grüsse
Vieta

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de