www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Algebra" - Körper
Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Körper: Integritätsring
Status: (Frage) beantwortet Status 
Datum: 14:14 Sa 26.01.2008
Autor: TTaylor

Aufgabe
Warum ist ein Integritätsring, der nur endlich viele Elemente besitzt ein Körper?

Ein Integritätsring ist ein Ring der keine Nullteiler besitzt. Zudem ist er ein kommutativer Ring mit Einselement.
Und ein Körper hat zu jedem multiplikativen Element ein Inverses und ist ebenfalls nullteilerfrei.
Aber wie muss ich argumentieren, dass ich sagen kann dass ein Integritätsring ein Körper ist?

        
Bezug
Körper: Antwort
Status: (Antwort) fertig Status 
Datum: 15:18 Sa 26.01.2008
Autor: unknown

Moin,


Du musst zeigen, dass für ein beliebiges von Null verschiedenes Element [mm] ${\textstyle a}$ [/mm] Deines Ringes ein Inverses existiert, also ein Element [mm] ${\textstyle b}$ [/mm] mit [mm] ${\textstyle ab = 1}$. [/mm] Versuch Dir vielleicht mal zu überlegen, dass die Abbildung [mm] (${\textstyle R}$ [/mm] ist der Ring)

   [mm] $\displaystyle [/mm] f : [mm] \begin{cases} R \to R \\ x \mapsto f(x) := ax \end{cases}$ [/mm]

injektiv ist. Wenn Du dann die Voraussetzung über [mm] ${\textstyle R}$ [/mm] anwendest, steht die Lösung fast schon da.


Hoffe, das hilft.

Bezug
                
Bezug
Körper: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:43 Mo 28.01.2008
Autor: TTaylor

Erstmal vielen Dank, aber ich verstehe immer noch nicht warum ich dann da zu jedem Element ein Inverses habe. Warum kann ich die Funktion f(x) ->ax bilden?

Bezug
                        
Bezug
Körper: Antwort
Status: (Antwort) fertig Status 
Datum: 15:00 Mo 28.01.2008
Autor: Alex__

Hi,

sei a ein beliebiges Ringelement ungleich 0, d.h. a ∈ [mm] R\{0}. [/mm] Die Menge [mm] $\{a^n| n \in \IN\}$ [/mm] ist endlich, da der Ring endlich ist. Somit gibt es mit m < n und am=an ⇒ am(1-an-m)=0. Da a kein Nullteiler ist, muss (1-an-m) = 0 sein, d.h. aan-m-1=1.

LG
Alex

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de