www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Moduln und Vektorräume" - Körper
Körper < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Körper: Assoziativ u. Distributgesetz
Status: (Frage) beantwortet Status 
Datum: 18:37 Do 07.05.2009
Autor: Derrec

Aufgabe
Sei k ein beliebiger Körper, und d [mm] \in [/mm] k derart, dass [mm] \alpha^2 [/mm] = d nicht für a Element k lösbar ist. Weisen Sie nach, dass die Multiplikation:
[mm] (a+b\alpha)(a'+b'\alpha)=(aa'+dbb')+(ab'+a'b)\alpha [/mm]
assoziativ und distributiv ist, indem Sie Matrizen der Gestalt [mm] \pmat{ a & b \\ db & a } [/mm] betrachten.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


Huhu,

ich habe diese Aufgabe in Lineare Algebra für Lehramt Mathe bekommen und hab nicht so wirklich einen Schimmer davon, was ich machen muss.

Also ich versuch mal so ein bisschen was zu schreiben, was ich als Ansatz habe...:

[mm] \alpha [/mm] = [mm] \wurzel{d} [/mm]
Man sucht also eine Lösung in k
Körpererweiterung [mm] \alpha [/mm] = [mm] \wurzel{d} [/mm] zu k
[mm] k[\wurzel{d}] [/mm] = { [mm] a+b\wurzel{d} [/mm] | a,b [mm] \in [/mm] k}
Also ist: [mm] k[\wurzel{d}]: (a+b\wurzel{d})(a'+b'\wurzel{d}) [/mm] = (aa' + dbb') + [mm] (ab'+a'b)\wurzel{d}. [/mm]
Das hinter dem = müsste nun also zu k gehören also [mm] \in [/mm] k
Fakt ist nun, dass [mm] (k[\wurzel{d}], [/mm] +, *) ein Körper ist und [mm] [k[\wurzel{d}]:k]=dim_{k} k[\wurzel{d}] [/mm] = {1, [mm] \wurzel{d} [/mm] } = d.

So. nun muss ich ja noch nachweisen, ob die beiden Gesetzte gelten oder nicht.
Wie funktioniert das?
Und ist denn mein bisheriger Ansatz richtig?
Ich danke euch schon einmal im voraus.
MfG

        
Bezug
Körper: Antwort
Status: (Antwort) fertig Status 
Datum: 19:59 Do 07.05.2009
Autor: felixf

Hallo!

> Sei k ein beliebiger Körper, und d [mm]\in[/mm] k derart, dass
> [mm]\alpha^2[/mm] = d nicht für a Element k lösbar ist. Weisen Sie
> nach, dass die Multiplikation:
>  [mm](a+b\alpha)(a'+b'\alpha)=(aa'+dbb')+(ab'+a'b)\alpha[/mm]
>  assoziativ und distributiv ist, indem Sie Matrizen der
> Gestalt [mm]\pmat{ a & b \\ db & a }[/mm] betrachten.
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
>
> Huhu,
>  
> ich habe diese Aufgabe in Lineare Algebra für Lehramt Mathe
> bekommen und hab nicht so wirklich einen Schimmer davon,
> was ich machen muss.

Nun, da oben steht etwas von Matrizen. Wieso machst du das nicht so? Rechne doch mal [mm] $\pmat{ a & b \\ db & a } \cdot \pmat{ a' & b' \\ db' & a' }$ [/mm] aus und vergleiche es mit [mm] $\pmat{ a a' + d b b' & a b' + a' b \\ d (a b' + a' b) & a a' + d b b' }$. [/mm]

> Also ich versuch mal so ein bisschen was zu schreiben, was
> ich als Ansatz habe...:
>  
> [mm]\alpha[/mm] = [mm]\wurzel{d}[/mm]
>  Man sucht also eine Lösung in k

Es gibt keine.

>  Körpererweiterung [mm]\alpha[/mm] = [mm]\wurzel{d}[/mm] zu k
>  [mm]k[\wurzel{d}][/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

= { [mm]a+b\wurzel{d}[/mm] | a,b [mm]\in[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

k}

>  Also ist: [mm]k[\wurzel{d}]: (a+b\wurzel{d})(a'+b'\wurzel{d})[/mm]
> = (aa' + dbb') + [mm](ab'+a'b)\wurzel{d}.[/mm]
>  Das hinter dem = müsste nun also zu k gehören also [mm]\in[/mm] k

Nun, das tut es sicher nicht. Es gehoert zu der Koerpererweiterung!

>  Fakt ist nun, dass [mm](k[\wurzel{d}],[/mm] +, *) ein Körper ist
> und [mm][k[\wurzel{d}]:k]=dim_{k} k[\wurzel{d}][/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

= {1,

> [mm]\wurzel{d}[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

} = d.

Die letzten beiden Gleichheitszeichen machen keinen Sinn.

LG Felix


Bezug
                
Bezug
Körper: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 08:56 Fr 08.05.2009
Autor: Derrec

Aufgabe
Hallo Felix.

Also wenn ich das jetzt richtig verstanden habe, muss ich nur diese Matrizen ausrechen?
Das war es dann schon oder wie?

Danke schon einmal für deine freundliche Hilfe
MfG

Bezug
                        
Bezug
Körper: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:20 So 10.05.2009
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de