www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra Sonstiges" - Körper
Körper < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Körper: Anordnung
Status: (Frage) beantwortet Status 
Datum: 11:19 Fr 27.04.2012
Autor: looney_tune

Aufgabe
Sei p [mm] \in \IQ [/mm] mit p > 0 und [mm] \wurzel{p} \not\in \IQ [/mm] gegeben.

a) Zeige, dass die Menge [mm] \IQ \wurzel{p} [/mm] := [mm] {x+y\wurzel{p}| x,y \in \IQ} \subset [/mm] R zusammen mit der von [mm] \IR [/mm] eingeschränkten Addition und Multiplikation ein Körper ist.

b) Für z= x+y [mm] \wurzel{p} \in \IQ (\wurzel{p}). [/mm] Sei [mm] \overline{z}:= [/mm] x - y [mm] \wurzel{p} \in \IQ (\wurzel{p}) [/mm] die konjugierte Zahl. Zeige, dass stets [mm] \overline{z+w}=\overline{z}+\overline{w} [/mm] sowie [mm] \overline{z*w}=\overline{z}*\overline{w} [/mm] gilt.

c) Zeige mit Hilfe von b , dass der Körper aus a auf zwei verschiedene Weisen angeordnet werden kann.


Also ich weiss, dass ich in a die Körperaxiome nachweisen muss und die Wohldefinitheit der Addition und Multiplikation.

Mein Problem ist, dass ich nicht weiß, was ich in b und c machen soll.
Bitte um Hilfe.

LG

        
Bezug
Körper: Antwort
Status: (Antwort) fertig Status 
Datum: 13:06 Fr 27.04.2012
Autor: angela.h.b.


> Sei p [mm]\in \IQ[/mm] mit p > 0 und [mm]\wurzel{p} \not\in \IQ[/mm]
> gegeben.
>  
> a) Zeige, dass die Menge [mm]\IQ \wurzel{p}[/mm] := [mm]{x+y\wurzel{p}| x,y \in \IQ} \subset[/mm]
> R zusammen mit der von [mm]\IR[/mm] eingeschränkten Addition und
> Multiplikation ein Körper ist.
>  
> b) Für z= x+y [mm]\wurzel{p} \in \IQ (\wurzel{p}).[/mm] Sei
> [mm]\overline{z}:=[/mm] x - y [mm]\wurzel{p} \in \IQ (\wurzel{p})[/mm] die
> konjugierte Zahl. Zeige, dass stets
> [mm]\overline{z+w}=\overline{z}+\overline{w}[/mm] sowie
> [mm]\overline{z*w}=\overline{z}*\overline{w}[/mm] gilt.
>  
> c) Zeige mit Hilfe von b , dass der Körper aus a auf zwei
> verschiedene Weisen angeordnet werden kann.
>  Also ich weiss, dass ich in a die Körperaxiome nachweisen
> muss und die Wohldefinitheit der Addition und
> Multiplikation.
>  
> Mein Problem ist, dass ich nicht weiß, was ich in b und c
> machen soll.

Hallo,

in b) sollst Du zwei Körperelemente  [mm] z_1=x_1+y_1\wurzel{p} [/mm] und [mm] z_2=x_2+y_2\wurzel{p} [/mm] nehmen und zeigen, daß  die Summe der Konjugierten gleich dem Konjugierten der Summe ist, analog fürs Produkt.

Um c) zu lösen, mußt Du sicher erstmal herausfinden, was eine Anordnung ist.
Dann sollst Du eine Relation sagen, mit welcher der hier vorliegende Körper ein angeordneter wird, und danach zeigen, daß es eine weitere Relation gibt, auf welche das zutrifft.
So jedenfalls verstehe ich die Aufgabe.

LG Angela

> Bitte um Hilfe.
>  
> LG


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de