www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Körper und Vektorraum
Körper und Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Körper und Vektorraum: Untervektorraum
Status: (Frage) beantwortet Status 
Datum: 13:03 Sa 19.11.2005
Autor: nebben

Hallo

Zeigen Sie: W [mm] \cap [/mm] (U+N) = U+(W [mm] \cap [/mm] N)

K ist ein Körper
V ist ein K-Vektorraum
U,W,N  sind Untervektorräume von V

Es gilt:U [mm] \subset [/mm] W


Hier fängt meine Lösung an:

U von V [mm] \not= [/mm] { [mm] \emptyset [/mm] } ist ein Untervekttorraum, wenn gilt:
a) [mm] u_1, u_2 \in [/mm] U ist auch [mm] u_1+u_2 \in [/mm] U
b) u [mm] \in [/mm] U und [mm] \a \el [/mm] K -> [mm] \a\.u \in [/mm] U

So auch  [mm] w_1,w_2 \in [/mm] W und [mm] n_1,n_2 \in [/mm] N.


Somit weiss ich schon mal, dass  (U+N)  einen Untervektorram von V bildet, da ...?

Was kann man (W [mm] \cap [/mm] N) umschreiben?

Oder wie geht das, bitte hier?


gruß nebben




        
Bezug
Körper und Vektorraum: Antwort
Status: (Antwort) fertig Status 
Datum: 13:14 Mo 21.11.2005
Autor: angela.h.b.


> Hallo
>
> Zeigen Sie: W [mm]\cap[/mm] (U+N) = U+(W [mm]\cap[/mm] N)
>
> K ist ein Körper
>  V ist ein K-Vektorraum
>  U,W,N  sind Untervektorräume von V
>  
> Es gilt:U [mm]\subset[/mm] W

Hallo,

ist das jetzt eine Erfindung oder ein Wunsch von Dir, oder eine Voraussetzung, die Du bisher nicht verraten hast?
Mich macht das sehr ratlos.
Ah, wahrscheinlich meinst Du nicht W sondern V!


>
>
> Hier fängt meine Lösung an:
>  
> U von

Teilmenge?

[mm] V\not=[/mm] [/mm] { [mm] \emptyset[} [/mm] ist ein Untervekttorraum, wenn

> gilt:
> a) [mm] u_1, u_2 \inU [/mm] ist auch [mm] u_1+u_2 \in[ [/mm] U
>  b) u [mm] \inU [/mm] und a [mm] \in [/mm] K -> [mm] au [mm] \in [/mm] U

>  
> So auch  [mm]w_1,w_2 \in[/mm] W und [mm]n_1,n_2 \in[/mm] N.
>  
>
> Somit weiss ich schon mal, dass  (U+N)  einen
> Untervektorram von V bildet, da ...?

Das mit dem Unterraum stimmt. Begründen tut man es, indem man sich zwei beliebige Vektoren aus U+N hernimmt und die Summe bzw. das Produkt eines derselbigen mit einem Skalar ausrechnet und entscheidet, ob das Ergebnis in U+N liegt oder nicht.

Datzu muß man wissen, was U+N ist. Weißt Du das? Wenn nicht, guck nach.

>  
> Was kann man (W [mm]\cap[/mm] N) umschreiben?

Ich weiß nicht, was Du meinst mit "umschreiben". In W [mm]\cap[/mm] N sind alle Vektoren, die sowohl in W als auch in N sind.

>  
> Oder wie geht das, bitte hier?

Also, ich würde die Aufgabe so angehen, daß ich mir ein Element aus W [mm]\cap[/mm] (U+N) hernehme und zeige, daß es auch in U+(W [mm]\cap[/mm] N) liegt, und umgekehrt. Wahrscheinlich ist ein bißchen etwas mit Basisergänzung dabei.

Gruß v. Angela

P.S.: Guck Dir doch vorm Abschicken die Vorschau an. Etwas mehr Sorgfalt erhöht auch die Chancen auf Beantwortung der Fragen.
Daß da  W statt V steht, macht die Aufgabe wirklich undurchsichtig, anscheinend ja nicht nur für mich.
Und es wäre Dir, hättest du Dir den zurm Abschicken bereiten Beitrag mal in der Vorschau angeguckt, aufgefallen, daß in Punkt b) in Deinem ursprünglichen Beitrag einfach Blödsinn steht.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de