www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gruppe, Ring, Körper" - Körperautomorph. über Polynom.
Körperautomorph. über Polynom. < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Körperautomorph. über Polynom.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:49 So 07.07.2013
Autor: JoeSunnex

Aufgabe
Aufgabe.)

Sei $K := [mm] \IQ[X]/(X^3+X^2-2X-1)$ [/mm] (ist ein Körper weil Polynom irred. über [mm]\mathbb{Q}[/mm] ist). Zeigen Sie, dass die [mm] $\IQ$-lineare [/mm] Abbildung:
[mm]\sigma: K \rightarrow K: \begin{cases} 1 \mapsto & 1\\ \overline{X} \mapsto & \overline{X}^2-2\\ \overline{X}^2 \mapsto & -\overline{X}^2 -\overline{X} + 3 \end{cases}[/mm]

multiplikativ ist.

Anmerkung: [mm] $\overline{X}$ [/mm] bezeichnet das Bild unter der kanonischen Projektion [mm] $\IQ \rightarrow [/mm] K$

Hallo zusammen,

ich habe bereits gezeigt, dass diese Abbildung bijektiv ist, sowie additiv (folgt ja aus der Linearität). Jetzt fehlt mir also nur noch die Multiplikativität und bei der Multiplikation zweier Nebenklassen erhalte ich ja Potenzen von $X$ größer als 2 z.B. ist ja [mm] $\overline{X}^3 [/mm] = [mm] -\overline{X}^2+2\overline{X}+1$. [/mm] Was gilt aber für [mm] $\overline{X}^4$? [/mm] Habe da so meine Probleme.

Freue mich daher auf eure Ratschläge.

Grüße
Joe

        
Bezug
Körperautomorph. über Polynom.: Antwort
Status: (Antwort) fertig Status 
Datum: 00:32 Mo 08.07.2013
Autor: felixf

Moin!

> Sei [mm]K := \IQ[X]/(X^3+X^2-2X-1)[/mm] (ist ein Körper weil
> Polynom irred. über [mm]\mathbb{Q}[/mm] ist). Zeigen Sie, dass die
> [mm]\IQ[/mm]-lineare Abbildung:
>  [mm]\sigma: K \rightarrow K: \begin{cases} 1 \mapsto & 1\\ \overline{X} \mapsto & \overline{X}^2-2\\ \overline{X}^2 \mapsto & -\overline{X}^2 -\overline{X} + 3 \end{cases}[/mm]
>  
> multiplikativ ist.
>  
> Anmerkung: [mm]\overline{X}[/mm] bezeichnet das Bild unter der
> kanonischen Projektion [mm]\IQ \rightarrow K[/mm]
>  Hallo zusammen,
>  
> ich habe bereits gezeigt, dass diese Abbildung bijektiv
> ist, sowie additiv (folgt ja aus der Linearität). Jetzt
> fehlt mir also nur noch die Multiplikativität und bei der
> Multiplikation zweier Nebenklassen erhalte ich ja Potenzen
> von [mm]X[/mm] größer als 2 z.B. ist ja [mm]\overline{X}^3 = -\overline{X}^2+2\overline{X}+1[/mm].
> Was gilt aber für [mm]\overline{X}^4[/mm]? Habe da so meine
> Probleme.

In dem Restklassenring [mm]K := \IQ[X]/(X^3+X^2-2X-1)[/mm] gilt doch [mm] $\overline{X}^3 [/mm] + [mm] \overline{X}^2 [/mm] - 2 [mm] \overline{X} [/mm] - 1 = 0$, also [mm] $\overline{X}^3 [/mm] = [mm] -\overline{X}^2 [/mm] + 2 [mm] \overline{X} [/mm] + 1$. Und dementsprechend [mm] $\overline{X}^4 [/mm] = [mm] (\overline{X}^3) \cdot \overline{X} [/mm] = [mm] (-\overline{X}^2 [/mm] + 2 [mm] \overline{X} [/mm] + 1) [mm] \overline{X} [/mm] = [mm] -\overline{X}^3 [/mm] + 2 [mm] \overline{X}^2 [/mm] + [mm] \overline{X} [/mm] = [mm] -(-\overline{X}^2 [/mm] + 2 [mm] \overline{X} [/mm] + 1) + 2 [mm] \overline{X}^2 [/mm] + [mm] \overline{X} [/mm] = 3 [mm] \overline{X}^2 [/mm] - [mm] \overline{X} [/mm] + 1$ etc.

Edit: Rechenfehler korrigiert.

LG Felix


Bezug
                
Bezug
Körperautomorph. über Polynom.: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:07 Mo 08.07.2013
Autor: JoeSunnex

Hallo Felix,

danke für deine Antwort, jetzt habe ich das Konzept auch endlich vollends verstanden.

>  
> In dem Restklassenring [mm]K := \IQ[X]/(X^3+X^2-2X-1)[/mm] gilt doch
> [mm]\overline{X}^3 + \overline{X}^2 - 2 \overline{X} - 1 = 0[/mm],
> also [mm]\overline{X}^3 = -\overline{X}^2 + 2 \overline{X} + 1[/mm].
> Und dementsprechend [mm]\overline{X}^4 = (\overline{X}^3) \cdot \overline{X} = (-\overline{X}^2 + 2 \overline{X} + 1) \overline{X} = -\overline{X}^3 + 2 \overline{X}^2 + \overline{X} = -(-\overline{X}^2 + 2 \overline{X} + 1) + 2 \overline{X}^2 + \overline{X} = 3 \overline{X}^2 + 3 \overline{X} + 1[/mm]
> etc.
>  

Du meinst sicherlich [mm] $3\overline{X}^2-\overline{X}-1$ [/mm] oder? :)

Grüße
Joe

> LG Felix
>  


Bezug
                        
Bezug
Körperautomorph. über Polynom.: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:15 Di 09.07.2013
Autor: felixf

Moin Joe,

> danke für deine Antwort, jetzt habe ich das Konzept auch
> endlich vollends verstanden.

schoen :)

> > In dem Restklassenring [mm]K := \IQ[X]/(X^3+X^2-2X-1)[/mm] gilt doch
> > [mm]\overline{X}^3 + \overline{X}^2 - 2 \overline{X} - 1 = 0[/mm],
> > also [mm]\overline{X}^3 = -\overline{X}^2 + 2 \overline{X} + 1[/mm].
> > Und dementsprechend [mm]\overline{X}^4 = (\overline{X}^3) \cdot \overline{X} = (-\overline{X}^2 + 2 \overline{X} + 1) \overline{X} = -\overline{X}^3 + 2 \overline{X}^2 + \overline{X} = -(-\overline{X}^2 + 2 \overline{X} + 1) + 2 \overline{X}^2 + \overline{X} = 3 \overline{X}^2 + 3 \overline{X} + 1[/mm]
> > etc.
>  >  
>
> Du meinst sicherlich [mm]3\overline{X}^2-\overline{X}-1[/mm] oder?
> :)

Ja, das meinte ich. Sorry :)

LG Felix



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de