www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gruppe, Ring, Körper" - Körperautomorphismus
Körperautomorphismus < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Körperautomorphismus: Idee/ Tipp
Status: (Frage) beantwortet Status 
Datum: 20:22 Di 16.09.2014
Autor: soulflow

Aufgabe
Zeigen Sie, dass die identische Abbildung [mm]id: \IQ \to \IQ[/mm] der einzige Körperautomorphismus des Körpers [mm]\IQ[/mm] ist.
Sie können folgende Aussagen verwenden:
[mm] \phi [/mm] ist injektiv
[mm] \phi : (\IQ, +) \to (\IQ, +)[/mm], [mm] \phi : (\IQ - {0}, *) \to (\IQ - {0}, *)[/mm] sind Gruppenhomomorphismen
und [mm]\phi(0) = 0 ; \phi(1) = 1[/mm]

Was ist [mm]\phi(n)[/mm] für [mm] n \in \IZ[/mm]. Was ist [mm]\phi(a/b)[/mm] für [mm]a/b \in \IQ[/mm]

Der Körper [mm]\IQ[\wurzel{2}][/mm] hat neben id einen weiteren Körperautomorphismus. Erraten und geben Sie ihn an.


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo matheraum,

ich brauch nochmal eure Hilfe.  Ich habe mir zu oben genannter Aufgabe schon gedanken gemacht.

Da ich bereits annehmen kann dass es  sich bei [mm] \phi : (\IQ, +) \to (\IQ, +)[/mm], [mm] \phi : (\IQ - {0}, *) \to (\IQ - {0}, *)[/mm]  um Gruppenhomomorphismus handelt, hätte ich jetzt einfach bewiesen, dass
[mm]\phi[/mm] alle Elemente in [mm]\IQ[/mm] festhält. Da [mm] \IN \subset \IZ \subset \IQ [/mm] und [mm]\phi(0) = 0 ; \phi(1) = 1[/mm] ist:
[mm] \phi(2) = \phi(1+1) = \phi(1) + \phi(1) = 1 + 1 = 2[/mm]
...
[mm] \phi(n+1) = \phi(n) + \phi(1) = n + 1[/mm]
Also [mm]\phi(n) = n[/mm] für alle n aus [mm]\IN[/mm]
Das gleiche jetzt für [mm]\IZ[/mm]:
Da für z > 0 aus  [mm]\IZ[/mm] schon bewiesen und -z < 0:
[mm] \phi(z) = z = -(-z) = - \phi(-z)[/mm], also auch[mm] \phi(z) = z[/mm] für alle z aus Z.
Zuletzt für [mm]\IQ[/mm]:
[mm] b * \phi(1(a/b)) = \phi(b) * \phi(a/b) = \phi(b* a/b) = \phi(a) = a[/mm]
Also ist [mm]\phi(a/b) = a/b[/mm]für alle [mm]a/b \in \IQ[/mm]
Damit hätte ich doch bewiesen, dass [mm]\phi[/mm] alle Elemente festhält und somit nur die identische Abbildung ein Körperautomorphismus ist.

"Was ist [mm]\phi(n)[/mm] für [mm] n \in \IZ[/mm]. Was ist [mm]\phi(a/b)[/mm] für [mm]a/b \in \IQ[/mm]" hätte ich damit ja eigentlich auch gezeigt?

Zum zweiten Teil der Aufgabe: Wie soll man das durch raten herausfinden? Gibt es da einen Trick oder kann mir jemand einen Denkanstoß geben?

LG

        
Bezug
Körperautomorphismus: Antwort
Status: (Antwort) fertig Status 
Datum: 07:23 Mi 17.09.2014
Autor: UniversellesObjekt

Den ersten Teil der Aufgabe hast du richtig gelöst. Mir ist indessen nicht ganz klar, was der Aufgabensteller mit "Sie dürfen annehmen..." meint. Denn die Strukturverträglichkeit bezüglich Verknüpfungen und Konstanten ist ja Definition eines Körperhomomorphismus. Des weiteren ist jeder Körperhomomorphismus imjektiv, du hast also allgemeiner gezeigt, dass die Identität der einzige Homomorphismus [mm] $\IQ\longrightarrow\IQ [/mm] $ ist. Noch etwas allgemeiner kann man zeigen, dass [mm] $\IQ [/mm] $ der initiale Körper der Charakteristik $ 0 $ ist, das heißt für $ K $ mit Charakteristik 0 gibt es genau einen Homomorphismus [mm] $\IQ\longrightarrow [/mm] K $. Verwendet man die richtige Definition der Charakteristik, so ist dies gerade die Definition von Charakteristik 0.

Mit einem Argument ähnlich wie für den ersten Teil kannst du dir überlegen, dass ein Homomorphismus [mm] \IQ [\sqrt {2}]\longrightarrow\IQ [\sqrt [/mm] {2}] $ die rationalen Zahlen fest lassen muss (etwa weil dieser Körper Charakteristik Null hat muss jede Komposition [mm] $\IQ\longrightarrow\IQ [\sqrt {2}]\longrightarrow\IQ [\sqrt [/mm] {2}] $ mit der Einbettung der rationalen Zahlen übereinstimmen). Wenn du bereits weißt, dass [mm] $\IQ [\sqrt [/mm] {2}] $ die Menge [mm] $\{ a+b\sqrt {2}\mid a, b\in\IQ\} [/mm] $ besitzt, musst du dich nur fragen, was mit [mm] $\sqrt [/mm] {2} $ passiert und ein Homomorphismus ist eindeutig bestimmt. Welche Kandidaten gäbe es denn da?

Liebe Grüße,
UniversellesObjekt

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de