www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gruppe, Ring, Körper" - Körperaxiome nachweisen
Körperaxiome nachweisen < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Körperaxiome nachweisen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:19 Sa 07.12.2013
Autor: nullahnung2217

Aufgabe
Entscheide jeweils, ob es sich (zusammen mit der gewöhnlichen Addition und Multiplikation) um einen Körper handelt.
a)  {a + [mm] b\wurzel{2} [/mm] | a,b [mm] \in \IQ [/mm] }

Hallo,
ich habe diese Aufgabenstellung und komm da nicht weiter. Also ich muss ja nachweisen, dass es sich dabei um einen Körper handelt oder nicht. Dies mach ich, indem ich alle Körperaxiome nachweise, also z.b.
(K,+) ist eine abelsche Gruppe (Neutrales Element 0)
Also auch das Assoziativitätsgesetz, dass a + (b + c) = (a + b) + c gilt.

Aber irgendwie weiß ich nicht genau, wie ich das machen soll, steh da grad irgendwie auf dem Schlauch. Was genau muss ich da für a und b einsetzen?

Vielen Dank schonmal für ein paar Tips von euch.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Körperaxiome nachweisen: Antwort
Status: (Antwort) fertig Status 
Datum: 09:18 So 08.12.2013
Autor: angela.h.b.


> Entscheide jeweils, ob es sich (zusammen mit der
> gewöhnlichen Addition und Multiplikation) um einen Körper
> handelt.
> a)U:= [mm] \{a + b\wurzel{2} | a,b \in \IQ\ } [/mm]
> Hallo,
> ich habe diese Aufgabenstellung und komm da nicht weiter.
> Also ich muss ja nachweisen, dass es sich dabei um einen
> Körper handelt oder nicht. Dies mach ich, indem ich alle
> Körperaxiome nachweise,

Hallo,

das kannst Du tun.

Da Du aber sicher weißt, daß [mm] \IR [/mm] ein Körper ist, kannst Du auch zeigen, daß U ein Teilkörper der reellen Zahlen ist, also zeigen:

[mm] 0\in [/mm] U, 1 [mm] \in [/mm] U
a,b [mm] \in [/mm] U\ [mm] \Rightarrow\ [/mm] a + b [mm] \in [/mm] U,\ a [mm] \cdot [/mm] b [mm] \in [/mm] U (Abgeschlossenheit bezüglich Addition und Multiplikation)
a [mm] \in [/mm] U\ [mm] \Rightarrow\ [/mm] -a [mm] \in [/mm] U (Zu jedem Element aus U ist auch das additive Inverse in U.)
a [mm] \in [/mm] U [mm] \setminus \{0\}\ \Rightarrow\ a^{-1} \in [/mm] U (Zu jedem Element aus U mit Ausnahme der Null ist auch das multiplikativ Inverse in U .)



also z.b.

> (K,+) ist eine abelsche Gruppe (Neutrales Element 0)
> Also auch das Assoziativitätsgesetz, dass a + (b + c) =
> (a + b) + c gilt.

>

> Aber irgendwie weiß ich nicht genau, wie ich das machen
> soll, steh da grad irgendwie auf dem Schlauch. Was genau
> muss ich da für a und b einsetzen?

Seien [mm] a,b,c\in [/mm] U.
Dann gibt es [mm] a_i, b_i, c_i\in \IQ, [/mm] i=1,2 mit

[mm] a=a_1+a_2\wurzel{2}, [/mm] b=..., c=...

Es ist

[mm] (a+b)+c=((a_1+a_2\wurzel{2})+(b_1+b_2\wurzel{2}))+(c_1+c_2\wurzel{2}) [/mm]

= ... ... ... ... ... ... ... ...

[mm] =(a_1+a_2\wurzel{2})+((b_1+b_2\wurzel{2})+(c_1+c_2\wurzel{2})) [/mm]

Du wendest so lange Regeln des Rechnens in [mm] \IR [/mm] an, bis Du schrittweise (mit einer Begründung bei jedem Schritt) unten angekommen bist.

LG Angela
>

> Vielen Dank schonmal für ein paar Tips von euch.

>

> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Bezug
                
Bezug
Körperaxiome nachweisen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:41 So 08.12.2013
Autor: nullahnung2217

Vielen Dank für die Hilfe, du hast mir damit sehr weiter geholfen.
Nun bin ich beim beweisen des multiplikativen Inversen angelangt, sodass a * [mm] a^{-1} [/mm]  = 1 ergibt. Aber ich finde keines, sodass [mm] (a_{1} [/mm] + [mm] a_{2}\wurzel{2}) [/mm] * [mm] (b_{1} [/mm] + [mm] b_{2}\wurzel{2}) [/mm] = [mm] a_{1}*b_{1} [/mm] + [mm] a_{1}*b_{2}\wurzel{2} [/mm] + [mm] a_{2}\wurzel{2}*b_{1} [/mm] + [mm] a_{2}\wurzel{2}*b_{2}\wurzel{2} [/mm] = 1 ergibt, wenn [mm] a_{1} [/mm] und [mm] a_{2} [/mm] ja nicht frei wählbar sind sondern beliebig.
Ist das so richtig und wenn ja, wie kann ich das beweisen?

Bezug
                        
Bezug
Körperaxiome nachweisen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:20 So 08.12.2013
Autor: weightgainer


> Vielen Dank für die Hilfe, du hast mir damit sehr weiter
> geholfen.
> Nun bin ich beim beweisen des multiplikativen Inversen
> angelangt, sodass a * [mm]a^{-1}[/mm]  = 1 ergibt. Aber ich finde
> keines, sodass [mm](a_{1}[/mm] + [mm]a_{2}\wurzel{2})[/mm] * [mm](b_{1}[/mm] +
> [mm]b_{2}\wurzel{2})[/mm] = [mm]a_{1}*b_{1}[/mm] + [mm]a_{1}*b_{2}\wurzel{2}[/mm] +
> [mm]a_{2}\wurzel{2}*b_{1}[/mm] + [mm]a_{2}\wurzel{2}*b_{2}\wurzel{2}[/mm] = 1
> ergibt, wenn [mm]a_{1}[/mm] und [mm]a_{2}[/mm] ja nicht frei wählbar sind
> sondern beliebig.
> Ist das so richtig und wenn ja, wie kann ich das beweisen?

Du musst [mm] $b_1$ [/mm] und [mm] $b_2$ [/mm] in Abhängigkeit von [mm] $a_1$ [/mm] und [mm] $a_2$ [/mm] ausrechnen, d.h. du hast zwei Unbekannte und eigentlich nur eine Gleichung.
Da aber alle Zahlen aus  [mm] $\IQ$ [/mm] kommen, kannst du das geschickt sortieren und dann "Koeffizientenvergleich" machen:

[mm] $a_1*b_1 [/mm] + [mm] 2*a_2*b_2 [/mm] + [mm] \wurzel{2} [/mm] * [mm] (a_1*b_2 [/mm] + [mm] a_2*b_1) [/mm] = 1 + 0 * [mm] \wurzel{2}$ [/mm]

Du kannst in den rationalen Zahlen die Wurzel nicht "kompensieren", d.h. das funktioniert nur dann, wenn auch auf der linken Seite der gleiche Faktor vor der Wurzel steht wie rechts. Gleichermaßen muss die rechte 1 dann identisch sein mit dem Rest der linken Seite.

Damit hast du dann ZWEI Gleichungen mit zwei Variablen, die kannst du auflösen und schon hast du dein Inverses Element da stehen (ggf. musst du beim Rechnen noch Fallunterscheidungen machen).

lg weightgainer

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de