www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Algebra" - Körpererweiterung/Tensorproduk
Körpererweiterung/Tensorproduk < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Körpererweiterung/Tensorproduk: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:41 Mi 07.06.2006
Autor: madde_dong

Aufgabe
Sei [mm] K\subsetneq [/mm] L eine nichttriviale Körpererweitung. Zeigen Sie, dass die K-Algebra [mm] A=L\otimes_K [/mm] L kein Körper ist.
Tipp: Betrachten Sie den Ringhomomorphismus [mm] \varphi: A\to [/mm] L, [mm] \lambda\otimes\mu\mapsto\lambda\mu. [/mm]

Tja, so ein gewisses Grundgerüst eines Beweises habe ich bereits, aber mir fehlen noch einige Details:

Erstmal weiß ich, dass es in einem Körper nur das Null- und das Einsideal gibt. Das bedeutet dann (sauber begründen kann ich es leider nicht), dass [mm] \varphi [/mm] injektiv sein muss.
Aber der Kern von [mm] \varphi [/mm] ist nicht trivial, denn [mm] \lambda\mu [/mm] ist ja schon 0, wenn einer der beiden Faktoren 0 ist, also habe ich als Kern alle Elemente, wo ein Teil des Tensors 0 ist. Leider ist der Tensor selbst dann aber auch 0 - darf ich trotzdem so argumentieren?
Da aber [mm] \varphi\not\equiv [/mm] 0, ist A kein Körper.

Wie gesagt, der Weg ist simpel, aber mir fehlen da noch zu viele Details. Kann mir jemand aushelfen?

        
Bezug
Körpererweiterung/Tensorproduk: Antwort
Status: (Antwort) fertig Status 
Datum: 12:44 Do 08.06.2006
Autor: felixf

Hallo dong!

> Sei [mm]K\subsetneq[/mm] L eine nichttriviale Körpererweitung.
> Zeigen Sie, dass die K-Algebra [mm]A=L\otimes_K[/mm] L kein Körper
> ist.
>  Tipp: Betrachten Sie den Ringhomomorphismus [mm]\varphi: A\to[/mm]
> L, [mm]\lambda\otimes\mu\mapsto\lambda\mu.[/mm]
>  Tja, so ein gewisses Grundgerüst eines Beweises habe ich
> bereits, aber mir fehlen noch einige Details:
>  
> Erstmal weiß ich, dass es in einem Körper nur das Null- und
> das Einsideal gibt. Das bedeutet dann (sauber begründen
> kann ich es leider nicht), dass [mm]\varphi[/mm] injektiv sein
> muss.

Wenn $A$ ein Koerper waere, ja. Oder [mm] $\varphi$ [/mm] ist identisch null, was aber hier nicht sein kann, da [mm] $\varphi(1 \otimes [/mm] 1) = 1 [mm] \neq [/mm] 0$ ist. Du musst also zeigen, dass der Kern von [mm] $\varphi$ [/mm] nicht trivial ist und somit [mm] $\ker \varphi \subsetneqq [/mm] A$ ein echtes, nicht-triviales Ideal ist. (Aber soweit warst du schon, oder?)

>  Aber der Kern von [mm]\varphi[/mm] ist nicht trivial, denn
> [mm]\lambda\mu[/mm] ist ja schon 0, wenn einer der beiden Faktoren 0
> ist, also habe ich als Kern alle Elemente, wo ein Teil des
> Tensors 0 ist. Leider ist der Tensor selbst dann aber auch
> 0 - darf ich trotzdem so argumentieren?

Nein, darfst du nicht! Das 0 auf 0 abgebildet wird muss so sein und ist kein Widerspruch!

Schau dir doch mal das Element $y := x [mm] \otimes [/mm] 1 - 1 [mm] \otimes [/mm] x [mm] \in [/mm] A$ an, wobei $x [mm] \in [/mm] L [mm] \setminus [/mm] K$ ist. Du musst zeigen, dass $y [mm] \neq [/mm] 0$ ist (da [mm] $\varphi(y) [/mm] = x - x = 0$ ist). Das ueberlass ich dir jetzt aber :)

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de