Körperschwerpunkt < Physik < Naturwiss. < Vorhilfe
|
Aufgabe | Berechnen Sie den Körperschwerpunkt einer Pyramide mit quadratischer Gundseite, homogener Dichte [mm] \rho_p [/mm] und Höhe h. |
Hallo zusammen,
Also die Formel lautet ja zunächst:
[mm] S_P=\frac{1}{M}\rho_p\int_{}r [/mm] dV, wobei r in kartesischen Koordinaten der Vektor in die 3 Raumdimensionen, [mm] \vec{r}=\vektor{x \\ y \\ z} [/mm] ist. Für die Masse der Pyramide weiß ich ja dass [mm] M=\rho_p\cdot [/mm] V, wobei [mm] V=\frac{1}{3}A\cdot [/mm] h, also erhalte ich eingesetzt:
[mm] \frac{3}{Ah}\int_{}\vektor{x \\ y \\ z}dV.
[/mm]
Jetzt geht es darum die Integral grenzen zu definieren und da habe ich ein wenig Probleme:
Ich könnte ja z.B. mein Koordinatensystem so wählen, dass der Nullpunkt im Mittelpunkt der Grundfläche ist, dann hätte ich für die vertikale x Komponente:
[mm] \int_0^h, [/mm] jetzt muss ich die Grundseite irgendwie so als Integralgrenzen bestimmen: Wenn a die Grundseitenlänge ist, kann ich dann einfach [mm] \int_{-\frac{a}{2}}^{\frac{a}{h}}, [/mm] wählen, damit das passt?
Schließlich bräuchte ich ja noch die Grenzen für die letzte Komponente, also die Seitenflächen- kann ich das mit dem Satz des Pythagoras folgendermaßen lösen: (?)
Sei x eine der Linen, die von der Ecke einer Grundseite zur Spitze zeigt, dann gilt: [mm] x=\sqrt{(\frac{a}{2})^2+h^2} [/mm] und da würde ich nun von Null bis x integrieren?
Hab ich mich da jetzt völlig vertan, oder macht das irgendwie Sinn?
Wäre für Hilfe dankbar!
Grüße
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 20:12 Sa 30.04.2011 | Autor: | rainerS |
Hallo!
> Berechnen Sie den Körperschwerpunkt einer Pyramide mit
> quadratischer Gundseite, homogener Dichte [mm]\rho_p[/mm] und Höhe
> h.
> Hallo zusammen,
>
> Also die Formel lautet ja zunächst:
>
> [mm]S_P=\frac{1}{M}\rho_p\int_{}r[/mm] dV, wobei r in kartesischen
> Koordinaten der Vektor in die 3 Raumdimensionen,
> [mm]\vec{r}=\vektor{x \\ y \\ z}[/mm] ist. Für die Masse der
> Pyramide weiß ich ja dass [mm]M=\rho_p\cdot[/mm] V, wobei
> [mm]V=\frac{1}{3}A\cdot[/mm] h, also erhalte ich eingesetzt:
>
> [mm]\frac{3}{Ah}\int_{}\vektor{x \\ y \\ z}dV.[/mm]
>
> Jetzt geht es darum die Integral grenzen zu definieren und
> da habe ich ein wenig Probleme:
>
> Ich könnte ja z.B. mein Koordinatensystem so wählen, dass
> der Nullpunkt im Mittelpunkt der Grundfläche ist, dann
> hätte ich für die vertikale x Komponente:
>
> [mm]\int_0^h,[/mm] jetzt muss ich die Grundseite irgendwie so als
> Integralgrenzen bestimmen: Wenn a die Grundseitenlänge
> ist, kann ich dann einfach
> [mm]\int_{-\frac{a}{2}}^{\frac{a}{h}},[/mm] wählen, damit das
> passt?
Meinst du für die Integration über die Höhe? Die geht von 0 bis h, da kommt kein a vor.
> Schließlich bräuchte ich ja noch die Grenzen für die
> letzte Komponente, also die Seitenflächen- kann ich das
> mit dem Satz des Pythagoras folgendermaßen lösen: (?)
Nein. Du musst über die horizontale Schnittfläche in der Höhe x integrieren. Deren Größe hängt von x ab: offensichtlich hat sie bei x=h die Kantenlänge 0, bei x=0 die Kantenlänge a, also in Höhe x:
[mm] a*\left(1-\bruch{x}{h}\right) [/mm] .
Die Integrationsgrenzen sind, wenn der Ursprung in der Mitte der Grundfläche liegt, jeweils
[mm] -\bruch{a}{2}*\left(1-\bruch{x}{h}\right) [/mm] und [mm] +\bruch{a}{2}*\left(1-\bruch{x}{h}\right) [/mm] .
Viele Grüße
Rainer
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 20:55 Sa 30.04.2011 | Autor: | Theoretix |
Ok verstehe, vielen Dank für deine Hilfe!
Gruß
|
|
|
|