www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionalanalysis" - Koerzivität
Koerzivität < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Koerzivität: Eigenschaft der Koerzivität
Status: (Frage) beantwortet Status 
Datum: 16:34 Fr 05.12.2014
Autor: huzein

Hallo liebe Leute,

meine Frage ist die folgende:

Sei $X$ ein Hilbert-Raum, [mm] $F:X\to\mathbb [/mm] R$ konvex und koerziv. Folgt daraus, dass $F$ nach unten beschränkt ist?

Dabei heißt ein Funktional [mm] $F:X\to\mathbb [/mm] R$ koerziv, falls gilt:
[mm] $\|u\|_X\to+\infty\implies F(u)\to+\infty.$ [/mm]

Hoffe ihr könnt mir helfen.

Ich bin der Meinung, dass das nicht gilt, aber aus einem anderen Forum wird gegenteiliges behauptet.

Anderes Forum Beitrag 7: http://matheplanet.com/default3.html?call=viewtopic.php?topic=124101&ref=http%3A%2F%2Fwww.google.de%2Furl%3Fsa%3Dt%26rct%3Dj%26q%3D%26esrc%3Ds%26source%3Dweb%26cd%3D1%26ved%3D0CCEQFjAA

Gruß

        
Bezug
Koerzivität: Antwort
Status: (Antwort) fertig Status 
Datum: 09:28 Sa 06.12.2014
Autor: fred97

Es gilt :

Satz: Ist X ein reflexiver Banachraum und f: X [mm] \to \IR [/mm] stetig, konvex und koerzitiv, so ex. min f(X).

Ein Hilbertraum ist ein Banachraum und reflexiv.


FRED

Bezug
                
Bezug
Koerzivität: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 10:29 Sa 06.12.2014
Autor: huzein

Danke für deine Antwort. Ich werde nun etwas konkreter.

Ich lege nun folgede Voraussetzungen zugrunde:
$X$ sei ein reflexiver Banachraum und [mm] $F:X\to\overline{\mathbb R}:=\mathbb R\cup\{+\infty\}$ [/mm] schwach unterhalb stetig und koerziv.

Dann wird gesagt, dass $F$ eine minimierende Folge [mm] $(u_n)$ [/mm] besitzt. (Warum?)
Existiert eine solche minimierende Folge, dann gilt
[mm] $F_{min} [/mm] := [mm] \inf\limits_{k\to\infty} F(u_k)\leq [/mm] F(u).$

Mit $F>0$ vorausgesetzt, ist doch aber dann
[mm] $0
womit $F$ nach unten beschränkt wäre.
Ist das so korrekt?


Bezug
                        
Bezug
Koerzivität: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:20 Fr 12.12.2014
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de