www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Kolmogorw-Smirnow-Test
Kolmogorw-Smirnow-Test < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kolmogorw-Smirnow-Test: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:36 Fr 12.07.2013
Autor: chrisxpred

Hallo zusammen,

kann mir jemand erklären, warum beim Kolmogorow-Smirnow-Test nicht nur die Differenz  [mm] |F_n(x_i) [/mm] - [mm] F(x_i)| [/mm] (einleuchtend) sondern auch noch [mm] |F_n(x_{i-1}) [/mm] - [mm] F(x_i)| [/mm] berechnet wird?


        
Bezug
Kolmogorw-Smirnow-Test: Antwort
Status: (Antwort) fertig Status 
Datum: 20:57 Fr 12.07.2013
Autor: luis52

Moin, schau dir mal []hier die letzte Treppe rechts an.  Dort ist $ [mm] |F_n(x_{i-1}) [/mm] - [mm] F(x_i)| [/mm] $ groesser als $ [mm] |F_n(x_i) [/mm] - [mm] F(x_i)| [/mm] $.


Bezug
                
Bezug
Kolmogorw-Smirnow-Test: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:23 Fr 12.07.2013
Autor: chrisxpred

Mir ist bewusst, dass der Abstand $ [mm] |F_n(x_{i-1}) [/mm] - [mm] F(x_i)| [/mm] $ größer sein kann als $ [mm] |F_n(x_{i}) [/mm] - [mm] F(x_i)| [/mm] $ und eine Hypothese damit abgelehnt werden kann.

Ich verstehe aber die mathematische Begründung dahinter nicht. Warum vergleich man den Wert der empirischen Verteilungsfunktion mit dem Wert der angenommenen Verteilungsfunktion an verschiedenen Stellen?

Bezug
                        
Bezug
Kolmogorw-Smirnow-Test: Antwort
Status: (Antwort) fertig Status 
Datum: 23:23 Fr 12.07.2013
Autor: luis52

Das Kriterium ist [mm] $D=\sup_x |F_n(x) [/mm] - F(x)| $ und lehnt ab, wenn $D$ "zu gross" ist. Das $D$ kann man an den Sprungstellen der empirischen Verteilungsfunktion [mm] $F_n$ [/mm]  suchen.



Bezug
                                
Bezug
Kolmogorw-Smirnow-Test: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:37 Sa 13.07.2013
Autor: chrisxpred

Das ist mir klar. Aber warum auch an den Stellen x-1?

Bezug
                                        
Bezug
Kolmogorw-Smirnow-Test: Antwort
Status: (Antwort) fertig Status 
Datum: 09:41 Sa 13.07.2013
Autor: luis52


> Das ist mir klar. Aber warum auch an den Stellen x-1?


Noch einmal: Betrachte die letzte Treppe im besagten Bild, sagen wir an der Stelle [mm] $x_i$. [/mm] Dort kannst du *zwei* Abstaende messen, naemlich [mm] $|F_n(x_i)-F(x)|$ [/mm] und [mm] $\lim_{x\to x_i^-}|F_n(x)-F(x)|$, [/mm] was mit [mm] $|F_n(x_{i-1})-F(x)|$ [/mm] uebereinstimmt.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de