www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "mathematische Statistik" - Kombination Statistik
Kombination Statistik < math. Statistik < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "mathematische Statistik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kombination Statistik: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:53 Mo 15.03.2021
Autor: jasmin89

Aufgabe
Eine Schublade enthält weiße und schwarze Socken. Werden zwei Socken blind gezogen dann sind beide mit einer Wahrscheinlichkeit von 50% weiß.

Frage: Wieviele Socken sind mindestens in der Schublade, wenn die Anzahl der schwarzen Socken gerade ist?




Kann mir jemand eine Hilfestellung geben wie ich die Aufgabe lösen kann. Auf den ersten Blick hört sich die Aufgabe einfach an aber ich komme da auf keinen guten Lösungsweg.

Ich würde einfach sagen, 2 Socken sind mindestens in der Schublade. Denn 4 Socken müssen in der Schublade sein um eine 50% Chance zu haben diese zu ziehen. Und dann würde ich sagen dass dann nur noch zwei Socken im Kästchen sind da ich ja schon zwei gezogen habe. :)

Aber evtl. kann mir ja hier jemand auf die Sprünge helfen

        
Bezug
Kombination Statistik: Antwort
Status: (Antwort) fertig Status 
Datum: 20:34 Sa 20.03.2021
Autor: Gonozal_IX

Hallo jasmin,

entschuldige die späte Antwort, hier im MR ging es wohl ein bisschen mit dem Fehlerteufel zu, wieso deine Frage nicht angezeigt wurde.

> Kann mir jemand eine Hilfestellung geben wie ich die
> Aufgabe lösen kann. Auf den ersten Blick hört sich die
> Aufgabe einfach an aber ich komme da auf keinen guten
> Lösungsweg.

Anderer Ansatz: Wie hoch ist denn die Wahrscheinlichkeit zwei weiße Socken zu ziehen, wenn in der Kiste n Socken sind, von denen k weiß sind?

Gruß,
Gono

Bezug
        
Bezug
Kombination Statistik: korrigierte Antwort
Status: (Antwort) fertig Status 
Datum: 09:13 So 21.03.2021
Autor: HJKweseleit

Nach einem Gedankenfehler in meiner ersten Antwort hier die Lösung:

Stell dir vor, dass du die beiden Socken blind der Reihe nach entnimmst. Zu Beginn hast du n Socken, w davon sind weiß. Dann erhältst du folgenden W.-Baum:

[Dateianhang nicht öffentlich]


Die W. für 2 weiße Socken beträgt nun [mm] \bruch{w(w-1)}{n(n-1)}, [/mm] und das soll 1/2 ergeben. Daraus folgt nun

2 w(w-1)=n(n-1).

Nun soll die Anzahl der schwarzen Socken gerade sein, also 2k. Damit ergibt sich:  n=w+2k und daraus

[mm] 2w^2-2w=(w+2k)(w+2k-1)=w^2+4wk+4k^2-w-2k \Rightarrow [/mm]

[mm] w^2-w-4wk-4k^2+2k=0 \Rightarrow [/mm]

[mm] w=\bruch{1+4k}{2}\pm \wurzel{\bruch{1+8k+16k^2}{4}+4k^2-2k} [/mm]

   [mm] =\bruch{1+4k}{2}\pm \bruch{\wurzel{1+32k^2}}{2} [/mm]

Das Ganze ist nur lösbar im Sinne der Aufgabenstellung, wenn die letzte Wurzel eine Quadratzahl ist. Die Lösung hat den kleinsten Wert beim kleinsten Wert von k. Man probiert kurz durch und stellt fest, dass dies für k=3 zum ersten Mal der Fall ist. Daraus ergibt sich:

[mm] w=\bruch{1+12}{2}+ \bruch{\wurzel{1+288}}{2}= [/mm] 15  (Lösung -2 entfällt)

n=w+2k=21

Probe mit dem Ausgangsproblem: 15/21*14/20=210/420=1/2


Wenn die Anzahl der schwarzen Socken auch ungerade sein darf, geht es mit w=3 und n=4:

3/4*3/3=1/2

Dateianhänge:
Anhang Nr. 1 (Typ: JPG) [nicht öffentlich]
Anhang Nr. 2 (Typ: JPG) [nicht öffentlich]
Anhang Nr. 3 (Typ: JPG) [nicht öffentlich]
Bezug
                
Bezug
Kombination Statistik: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:21 Mo 22.03.2021
Autor: HJKweseleit

In meiner ersten Antwort habe ich mit der Zerlegung eines Dreiecks in zwei Teildreiecke argumentiert. Dabei waren die Teildreiecke aber keine Darstellung der Summe 1+2+3+4..., sondern 1+3+5+7... und die Argumentation daher falsch. Habe ich zum Glück selber noch gemerkt.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "mathematische Statistik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de