www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Kombination mit Wiederholung
Kombination mit Wiederholung < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kombination mit Wiederholung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:14 Sa 22.10.2005
Autor: WiWi

Hey,

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Folgendes Problem, das ich nicht so ganz einsehen will:

Zur Auswahl stehen verschiedene Beilagen A,B,C, aus denen wir zwei auswählen können. Wie wahrscheinlich ist es, zweimal A zu wählen.

Als Lösung ist angegeben: 1/9, was klar ist: Beim ersten Mal steht die Wahl zwischen 3 Möglichkeiten, beim zweiten Mal ebenso zwischen
drei, da man ja auch ein zweites Mal A wählen kann.

Aber: Wieso kann man das Problem nicht als Kombination "2 aus 3" mit Wiederholung betrachten. Dies wird ja berechnet nach [mm] \vektor{n+i-1 \\ i} [/mm] und ergäbe für diesen Fall 6 Möglichkeiten, bzw. eine Wahrscheinlichkeit von 1/6.

Der große Unterschied liegt hier anscheinend in der Reihenfolge. Das Lehrbuch geht davon aus, dass sie in diesem Fall von Bedeutung ist,
ich würde aber sagen, nur das Endergebnis spielt eine Rolle. Bei den übrigen Möglichkeiten ist es doch vollkommen unerheblich, ob ich
z.B.: AB oder BA auswähle.

Vielleicht kann jemand helfen... besten Dank

Wiwi

        
Bezug
Kombination mit Wiederholung: Antwort
Status: (Antwort) fertig Status 
Datum: 13:54 Sa 22.10.2005
Autor: Stefan

Hallo WiWi!

Ich stimme dir vollkommen zu. Bei der Auswahl der Beilagen kommt es offenbar nicht auf die Reihenfolge an.

Daher ist deine Antwort richtíg und die des Lehrbuches falsch. Soll vorkommen... ;-)

Liebe Grüße
Stefan

Bezug
                
Bezug
Kombination mit Wiederholung: Noch ein kleines Problem
Status: (Frage) beantwortet Status 
Datum: 14:06 Sa 22.10.2005
Autor: WiWi

Hey Stefan,

danke für die prompte Antwort. Vielleicht kannst du mir noch bei einem anderen Problem helfen...

Es gebe [mm] \vektor{49 \\ 6} [/mm] mögliche Lottozahlenkombinationen. Soweit klar.

Nun lautet die Frage: Wieviele dieser Möglichkeiten enthalten eine 17.

Okay. Meine Antwort wäre gewesen [mm] \vektor{49 \\ 6} [/mm] - [mm] \vektor{48 \\ 6} [/mm]
- also: Alle Kombinationen abzüglich der ohne 17.

Als Lösung ist angegeben: [mm] \vektor{48 \\ 5} [/mm] ... und obwohl es zum selben Ergebnis führt ist mir dieser Rechenweg echt schleierhaft.
Vielleicht kannst du ihn mir kurz erläutern...

Besten Dank

Wiwi

Bezug
                        
Bezug
Kombination mit Wiederholung: Antwort
Status: (Antwort) fertig Status 
Datum: 14:10 Sa 22.10.2005
Autor: Stefan

Hallo Wiwi!

Naja, wenn du die $17$ doch schon hast (das ist ja die Voraussetzung) musst du noch aus den verbleibenden $48$ Zahlen $5$ ziehen.

Mache dir das doch mal an einem einfacheren Beispiel klar.

Wir haben:

[mm] $\{1,2,3,4\}$ [/mm]

und wollen alle Dreier-Kombinationen betrachten, die eine $1$ enthalten.

Das sind

[mm] $\{1,2,3\}$, $\{1,2,4\}$ [/mm] und [mm] $\{1,3,4\}$. [/mm]

Jetzt denke dir mal die $1$ weg, die steht ja sowieso in jeder Menge. Dann siehst du, dass dies genau die Möglichkeiten sind, aus der Menge [mm] $\{2,3,4\}$ [/mm] zwei Elemente auszuwählen.

Liebe Grüße
Stefan

Bezug
                                
Bezug
Kombination mit Wiederholung: Super
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:16 Sa 22.10.2005
Autor: WiWi

Herzlichen Dank, Stefan.

Ich habe gar nicht daran gedacht, dass die 17 ja schon in jeder Menge steht... im Grunde total einleutend und gut erklärt.

Besten Dank...

Wiwi

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de