www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Kombinatorik" - Kombinatorik
Kombinatorik < Kombinatorik < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kombinatorik: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:36 Di 20.05.2014
Autor: Mathics

Aufgabe
An einem Fußballturnier nehmen 16 Mannschaften teil. Es gebe zwei stärkste Mannschaften, die als Favoriten beim Turnier gelten. Die 16 Mannschaften  werden (zufällig) in zwei Gruppen (zu je 8 Mannschaften) eingeteilt. Ermitteln Sie die Wahrscheinlichkeit, dass die beiden stärksten Mannschaften in der gleichen Gruppe sind.

Hallo,

ich habe hier einen Lösungsvorschlag aus der Vorlesung. Undzwar sieht der wie folgt aus:


(a) Anzahl der Zusammenstellungsmöglichkeiten der zwei Gruppen: |Ω| = [mm] \vektor{16 \\ 8} [/mm] =  12 870. Es sei

• A="beide stärkste Mannschaften seien in der gleichen Gruppe",
• Ai="beide stärkste Mannschaften sind in der i-ten Gruppe", i=1,2.
Dann ist A = A1 ∪ A2. |A1| = [mm] \vektor{14 \\ 6} [/mm] = 3003, |A2| = [mm] \vektor{14 \\ 8} [/mm] = [mm] \vektor{14 \\ 6}= [/mm] 3003 (alle Gruppen sind gleich groß: daher |A1| = |A2|).

P(A1 ∪ A2)=P(A1)+P(A2)=2|A1|/|Ω|=2 [mm] \vektor{14 \\ 6} [/mm] / [mm] \vektor{16 \\ 8}= [/mm] 0.467.


Leider blicke ich bei dieser Rechnung nicht so ganz durch. Meine Gedanken wären die folgenden:

[mm] \vektor{16 \\ 8} [/mm] = das steht erstmal dafür, dass aus 16 Personen eine 8er Gruppe ausgesucht wird, wobei die Reihenfolge nicht berücksichtigt wird.

[mm] \vektor{14 \\ 6} [/mm] = das steht dafür, dass aus den 14 übrigen Leuten (ausgenommene die beiden stärksten) 6 Leute herausgenommen werden.

[mm] \vektor{14 \\ 8} [/mm] = aus 14 Leuten (ausgenommen von den 2 stärksten) wird eine 8er Gruppe zusammengestellt. Ist das hier nur Zufall, dass da dasselbe [mm] wie\vektor{14 \\ 6} [/mm] = 3003 herauskommt?

Folglich wäre am Ende:

( [mm] \vektor{14 \\ 6} [/mm] + [mm] \vektor{14 \\ 8} [/mm] ) / [mm] \vektor{16 \\ 8} [/mm]

Im Zähler steht die Möglichkeiten für eine (volle) 8 er Gruppe mit Mannschaften (ohne die 2 stärksten) und die Möglichkeiten für eine 6er Gruppe, wo nun die 2 stärksten automatisch hinzukommen. Das ganze geteilt durch alle Möglichkeiten eine zwei Gruppen zusammenzustellen im Nenner.

Was sagt Ihr zu diesen Gedanken?

LG
Mathics

        
Bezug
Kombinatorik: Antwort
Status: (Antwort) fertig Status 
Datum: 19:52 Di 20.05.2014
Autor: abakus


> An einem Fußballturnier nehmen 16 Mannschaften teil. Es
> gebe zwei stärkste Mannschaften, die als Favoriten beim
> Turnier gelten. Die 16 Mannschaften werden (zufällig) in
> zwei Gruppen (zu je 8 Mannschaften) eingeteilt. Ermitteln
> Sie die Wahrscheinlichkeit, dass die beiden stärksten
> Mannschaften in der gleichen Gruppe sind.
> Hallo,

>

> ich habe hier einen Lösungsvorschlag aus der Vorlesung.
> Undzwar sieht der wie folgt aus:

>
>

> (a) Anzahl der Zusammenstellungsmöglichkeiten der zwei
> Gruppen: |Ω| = [mm]\vektor{16 \\ 8}[/mm] = 12 870. Es sei

>

> • A="beide stärkste Mannschaften seien in der gleichen
> Gruppe",
> • Ai="beide stärkste Mannschaften sind in der i-ten
> Gruppe", i=1,2.
> Dann ist A = A1 ∪ A2. |A1| = [mm]\vektor{14 \\ 6}[/mm] = 3003,
> |A2| = [mm]\vektor{14 \\ 8}[/mm] = [mm]\vektor{14 \\ 6}=[/mm] 3003 (alle
> Gruppen sind gleich groß: daher |A1| = |A2|).

>

> P(A1 ∪ A2)=P(A1)+P(A2)=2|A1|/|Ω|=2 [mm]\vektor{14 \\ 6}[/mm] /
> [mm]\vektor{16 \\ 8}=[/mm] 0.467.

>
>

> Leider blicke ich bei dieser Rechnung nicht so ganz durch.
> Meine Gedanken wären die folgenden:

>

> [mm]\vektor{16 \\ 8}[/mm] = das steht erstmal dafür, dass aus 16
> Personen eine 8er Gruppe ausgesucht wird, wobei die
> Reihenfolge nicht berücksichtigt wird.

>

> [mm]\vektor{14 \\ 6}[/mm] = das steht dafür, dass aus den 14
> übrigen Leuten (ausgenommene die beiden stärksten) 6
> Leute herausgenommen werden.

>

> [mm]\vektor{14 \\ 8}[/mm] = aus 14 Leuten (ausgenommen von den 2
> stärksten) wird eine 8er Gruppe zusammengestellt. Ist das
> hier nur Zufall, dass da dasselbe [mm]wie\vektor{14 \\ 6}[/mm] =
> 3003 herauskommt?

>

> Folglich wäre am Ende:

>

> ( [mm]\vektor{14 \\ 6}[/mm] + [mm]\vektor{14 \\ 8}[/mm] ) / [mm]\vektor{16 \\ 8}[/mm]

>

> Im Zähler steht die Möglichkeiten für eine (volle) 8 er
> Gruppe mit Mannschaften (ohne die 2 stärksten) und die
> Möglichkeiten für eine 6er Gruppe, wo nun die 2
> stärksten automatisch hinzukommen. Das ganze geteilt durch
> alle Möglichkeiten eine zwei Gruppen zusammenzustellen im
> Nenner.

>

> Was sagt Ihr zu diesen Gedanken?

>

> LG
> Mathics

Hallo,
vielleicht ist jemand anderes bereit, deinen oder den Vorschlag der Vorlesung nachzuvollziehen.
Ich werde es nicht tun, weil beide um Größenordungen komplizierter sind als notwendig.
Hier ist meine Variante:
Eine der beiden starken Mannschaften kommt in irgendeine der beiden Gruppen (das ist sicher). Für die andere starke Mannschaft gibt es jetzt noch 15 mögliche Plätze, davon sind 7 in der selben Gruppe (und 8 in der anderen). Das Ergebnis ist 7/15. Wenn du das Gleiche hast, sollte deine Überlegung stimmen.
Gruß Abakus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


Alle Foren
Status vor 48m 11. Megan33
DiffGlGew/Randwertproblem
Status vor 1h 23m 7. angela.h.b.
Mengenlehre/Potenzmenge, Surjektion
Status vor 3h 36m 20. matux MR Agent
UAnaRn/Lagrange-Multiplikatoren-Bewei
Status vor 3h 38m 26. zweidreivier
CafeVH/Zwischen Proton und Elektron
Status vor 3h 39m 81. zweidreivier
CafeVH/Kann man beim Roulette verlier
^ Seitenanfang ^
www.vorhilfe.de