www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Kombinatorik" - Kombinatorik
Kombinatorik < Kombinatorik < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kombinatorik: Formel zu Kombinatorik
Status: (Frage) beantwortet Status 
Datum: 14:04 So 31.01.2016
Autor: Spender

Aufgabe
n·(n-1)·(n-2)·…·(n-k+1)/k!

Hallo,

ich habe hier einen Formulierung gefunden, die doch so nicht richtig ist oder?
"Aus n verschiedenen Elementen können k Elemente (k ≤ n) ohne Berücksichtigung der Reihenfolge auf n·(n-1)·(n-2)·…·(n-k+1)/k! Arten ausgewählt werden" Muss es nicht heißen, wenn die Reihenfolge egal ist und nicht zurüclgelegt wird: n!/ k!*(n-k)!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Merci




        
Bezug
Kombinatorik: Lösung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:59 So 31.01.2016
Autor: Spender

Das ist der Fall wenn ich die Reihenfolge beachte und nicht wiederhole!



Bezug
        
Bezug
Kombinatorik: Antwort
Status: (Antwort) fertig Status 
Datum: 15:04 So 31.01.2016
Autor: angela.h.b.


> n·(n-1)·(n-2)·…·(n-k+1)/k!
>  Hallo,
>  
> ich habe hier einen Formulierung gefunden, die doch so
> nicht richtig ist oder?
>  "Aus n verschiedenen Elementen können k Elemente (k ≤
> n) ohne Berücksichtigung der Reihenfolge auf
> n·(n-1)·(n-2)·…·(n-k+1)/k! Arten ausgewählt werden"
> Muss es nicht heißen, wenn die Reihenfolge egal ist und
> nicht zurüclgelegt wird: n!/ k!*(n-k)!

Hallo,

[willkommenmr].

Beides ist richtig:

es ist [mm] \bruch{n!}{k!*(n-k)!}=\bruch{n*(n-1)*(n-2)*...(n-k+1)*(n-k)(n-k-1)*...*3*2*1}{k!*(n-k)!}=\bruch{n*(n-1)*(n-2)*...(n-k+1)*(n-k)!}{k!*(n-k)!}=\bruch{n*(n-1)*(n-2)*...(n-k+1)}{k!} [/mm]

Ohne Zurücklegen, ohne Beachtung der Reihenfolge.

LG Angela

>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
> Merci
>  
>
>  


Bezug
                
Bezug
Kombinatorik: NAchfrage
Status: (Frage) beantwortet Status 
Datum: 15:57 So 31.01.2016
Autor: Spender

Hi :)

kannst mir das noch mal darlegen?
Wie komme ich auf (n-k+1) * (n-k) * (n-k-1) ...

Bezug
                        
Bezug
Kombinatorik: Antwort
Status: (Antwort) fertig Status 
Datum: 22:19 So 31.01.2016
Autor: angela.h.b.


> Hi :)
>  
> kannst mir das noch mal darlegen?
> Wie komme ich auf (n-k+1) * (n-k) * (n-k-1) ...  

Hallo,

ich mache das mal an einem Beispiel:

es ist doch
(n=10, k=4, n-k=6)

10!=10*9*...*7*6*5*...*2*1=10*9*...*(6+1)*6*(6-1)*...*2*1.

Es ist halt (n-k-1) der Vorgänger von n-k, und (n-k+1) der Nachfolger.

LG Angela


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


Alle Foren
Status vor 13h 05m 6. knoppi
CafeVH/Vorschläge für kleine Online-Mathe-Programme
Status vor 13h 09m 7. knoppi
S8-10/Formel umstellen
Status vor 1d 8h 23m 2. matux MR Agent
FrzLekt/L'apocalypse sans peine
Status vor 2d 1. Noya
UAnaSon/direkte Methode Variationsrech
Status vor 5d 5. mana
FunkAna/Ungleichung
^ Seitenanfang ^
www.vorhilfe.de