Kombinatorik < Sonstiges < Schule < Mathe < Vorhilfe
|
Hallo
bei 3 meiner Übungsaufgaben komme ich auf andere Lösungen als die angeblich korrekten, deswegen will ich sie allesamt mal hier posten und fragen was ihr so denkt:
1) Ein Passwort muss 6 Stellen lang sein. Wie viele Passwörter gibt es, wenn es 4 Kleinbuchstaben und genau 2 Ziffern enthalten muss.
Mein Ansatz: Es gibt genau [mm] 26^4 [/mm] Passwörter mit 4 Kleinbuchstaben. Will ich dieses 4-stellige Passwort mit einer Ziffer anreichern, so kann ich aus 10 Ziffern wählen und kann sie an 5 verschiedenen Stellen einfügen. Also: [mm] 26^4 [/mm] * 10 * 5.
Wenn ich jetzt noch eine weitere Ziffer hinzufüge, kann ich wieder aus 10 Ziffern wählen und kann diese zweite Ziffer an nunmehr 6 verschiedenen Stellen einfügen, also: [mm] 26^4 [/mm] * 10 * 5 * 10 * 6.
Das korrekte Ergebnis ist allerdings angeblich 685464000 (!= [mm] 26^4 [/mm] * 10 * 5 * 10 * 6)
2) Wieviele zehnstellige Dualzahlen haben genau drei "0"? Mein Ansatz: Es gibt eine 7-stellige Dualzahl ganz ohne 0. Die erste "0" kann ich an 8 verschiedenen Stellen einfügen. Die zweite kann ich an 9 verschiedenen Stellen einfügen. Und die dritte an 10 verschiedenen Stellen. Also 8 * 9 * 10 = 720. Das korrekte Ergebnis ist allerdings angeblich 120.
3) Wieviele zehnstellige Dualzahlen haben höchstens zwei "0". Mein Ansatz: Analog zu meinem Ansatz bei 2) gibt es EINE Dualzahl ganz ohne "0", Dann gibt es 10 Dualzahlen mit einer "0". Und es gibt 9 * 10 Dualzahlen mit zweimal "0". Also im Ergebnis 1 + 10 + 9 * 10. Richtiges Ergebnis ist allerdings angeblich 56 (!= 1 + 10 + 9 * 10).
Könnt ihr mir helfen?
Danke!
|
|
|
|
Guten Tag sancho1980
Nur mal zur ersten Aufgabe:
> 1) Ein Passwort muss 6 Stellen lang sein. Wie viele
> Passwörter gibt es, wenn es 4 Kleinbuchstaben und genau 2
> Ziffern enthalten muss.
>
> Mein Ansatz: Es gibt genau [mm]26^4[/mm] Passwörter mit 4
> Kleinbuchstaben. Will ich dieses 4-stellige Passwort mit
> einer Ziffer anreichern, so kann ich aus 10 Ziffern wählen
> und kann sie an 5 verschiedenen Stellen einfügen. Also:
> [mm]26^4[/mm] * 10 * 5.
> Wenn ich jetzt noch eine weitere Ziffer hinzufüge, kann
> ich wieder aus 10 Ziffern wählen und kann diese zweite
> Ziffer an nunmehr 6 verschiedenen Stellen einfügen, also:
> [mm]26^4[/mm] * 10 * 5 * 10 * 6.
> Das korrekte Ergebnis ist allerdings angeblich 685464000
> (!= [mm]26^4[/mm] * 10 * 5 * 10 * 6)
Ich denke, dass du beachten solltest, dass du nach deiner
Methode nicht lauter unterschiedliche Passwörter erzeugst.
Beispiel:
Wenn du etwa in das Wort "bzku" erst einmal eine "7" an die
4.Stelle setzt (dann hast du neu "bzk7u") und dann an die 5.
Stelle wieder eine "7", so hast du "bzk77u". Das ist allerdings
dasselbe Wort, das du auch erhalten hättest, wenn du die zweite
"7" nicht an Position 5, sondern an Position 4 gesetzt hättest.
LG , Al-Chwarizmi
|
|
|
|
|
Hallo,
>
> bei 3 meiner Übungsaufgaben komme ich auf andere Lösungen
> als die angeblich korrekten, deswegen will ich sie allesamt
> mal hier posten und fragen was ihr so denkt:
>
> 1) Ein Passwort muss 6 Stellen lang sein. Wie viele
> Passwörter gibt es, wenn es 4 Kleinbuchstaben und genau 2
> Ziffern enthalten muss.
>
> Mein Ansatz: Es gibt genau [mm]26^4[/mm] Passwörter mit 4
> Kleinbuchstaben.
Soweit ist das erstmal richtig.
> Will ich dieses 4-stellige Passwort mit
> einer Ziffer anreichern, so kann ich aus 10 Ziffern wählen
> und kann sie an 5 verschiedenen Stellen einfügen.
Diese Überlegung ist jetzt nicht mehr zielführend.
> Also:
> [mm]26^4[/mm] * 10 * 5.
> Wenn ich jetzt noch eine weitere Ziffer hinzufüge, kann
> ich wieder aus 10 Ziffern wählen und kann diese zweite
> Ziffer an nunmehr 6 verschiedenen Stellen einfügen, also:
> [mm]26^4[/mm] * 10 * 5 * 10 * 6.
> Das korrekte Ergebnis ist allerdings angeblich 685464000
Mache es so: du hast [mm] 26^4 [/mm] Möglichkeiten für die Kleinbuchstaben und [mm] 10^2 [/mm] Möglichkeiten für die Ziffern. Die Anzahl der möglichen Positionen für Buchstaben und Ziffern berechnent man hier per Binomialkoeffizient (weshalb?)
>
> 2) Wieviele zehnstellige Dualzahlen haben genau drei "0"?
> Mein Ansatz: Es gibt eine 7-stellige Dualzahl ganz ohne 0.
> Die erste "0" kann ich an 8 verschiedenen Stellen
> einfügen. Die zweite kann ich an 9 verschiedenen Stellen
> einfügen. Und die dritte an 10 verschiedenen Stellen. Also
> 8 * 9 * 10 = 720. Das korrekte Ergebnis ist allerdings
> angeblich 120.
Auch hier muss man mit dem Binomialkoeffizient rechnen. Ich halte die angegebene Musterlösung jedoch für falsch. Unter einer 'zehnstelligen Dualzahl' verstehe ich (zumindest in der Mathematik) eine Zahl mit einer führenden 1 und insgesamt 10 Stellen. Also sind nur die folgenden 9 Stellen zu betrachten, und da würde das richtige Ergebnis 84 betragen (wiederum: weshalb?). Der Autor der Aufgabe lässt jedoch offensichtlich auch führende Nullen zu, unter dieser Voraussetzung stimmen die 120.
> 3) Wieviele zehnstellige Dualzahlen haben höchstens zwei
> "0". Mein Ansatz: Analog zu meinem Ansatz bei 2) gibt es
> EINE Dualzahl ganz ohne "0", Dann gibt es 10 Dualzahlen
> mit einer "0". Und es gibt 9 * 10 Dualzahlen mit zweimal
> "0". Also im Ergebnis 1 + 10 + 9 * 10. Richtiges Ergebnis
> ist allerdings angeblich 56 (!= 1 + 10 + 9 * 10).
>
Auch hier muss man im Prinzip mit Binomialkoeffizienten rechnen (wieder unter der Annahme, dass führende Nullen erlaubt sind):
[mm]{10 \choose 0}+{10 \choose 1}+{10 \choose 2}=1+10+45=56[/mm]
Gruß, Diophant
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 03:20 Mo 05.02.2018 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|