www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Wahrscheinlichkeitstheorie" - Kombinatorik
Kombinatorik < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kombinatorik: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:50 Do 26.10.2006
Autor: thePan

Aufgabe
Ein Gewinner eines Preisausschreibens wird zu einer Fernsehshow eingeladen: Er darf 10mal sein Glück mit einem 6-seitgen Würfel versuchen: Bei jedem 6er erhält er 100 Eure.

Mit welchen Ausgaben haben die Finanzies des Preisauschreibens pro Gewinner durchschnittlich zu rechnen?

Ich muss mich entschuldigen wenn ich ein wenig neben mir stehe... doch meine Wahrscheinlichkeitskenntnisse liegen bald 6 Jahre zurück und aus den alten Büchern werde ich nicht richtig schlau.

Klar könnte ich das Ergebnis per Baumdiagramm lösen, doch da ich das Experiment weiter abwandeln will (mehr Ebenen/ 100 statt 10 Würfelversuche) fürchte ich um die Übersicht.

Die inverse Wahrscheinlichkeit, nichts zu gewinnen beträgt (5 /6) ^10, die Wahrscheinlichkeit mindestens einmal 100 Euro zu gewinnen also 83%.

Doch wie stelle ich es an die durchschnittliche Anzahl an 6er, sprich 100 Euro-Gewinnen zu berechnen?


Zumindest ein kleiner Tipp unter welchen Stichwort mir vielleicht weitergeholfen werden kann wäre spitze... habt dank, mir dabei zu helfen, mein Wahrscheinlichkeits-Wissen ein wenig aufzufrischen.


Ps: Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Kombinatorik: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:53 Do 26.10.2006
Autor: thePan

*Hand an den Kopf schlag*

10 *(0,16)...

Das wäre wohl zu einfach?

Bezug
                
Bezug
Kombinatorik: Antwort
Status: (Antwort) fertig Status 
Datum: 06:58 Do 26.10.2006
Autor: Marc

Hallo,

> *Hand an den Kopf schlag*
>  
> 10 *(0,16)...
>  
> Das wäre wohl zu einfach?

Das ist richtig (allerdings nur für die Anzahl der Sechsen und nicht für die Antwort auf die finanziellen Ausgaben ;-))

Viele Grüße,
Marc

Bezug
        
Bezug
Kombinatorik: Antwort
Status: (Antwort) fertig Status 
Datum: 06:55 Do 26.10.2006
Autor: Marc

Hallo thePan,

[willkommenmr]

> Ein Gewinner eines Preisausschreibens wird zu einer
> Fernsehshow eingeladen: Er darf 10mal sein Glück mit einem
> 6-seitgen Würfel versuchen: Bei jedem 6er erhält er 100
> Eure.
>  
> Mit welchen Ausgaben haben die Finanzies des
> Preisauschreibens pro Gewinner durchschnittlich zu
> rechnen?
>  Ich muss mich entschuldigen wenn ich ein wenig neben mir
> stehe... doch meine Wahrscheinlichkeitskenntnisse liegen
> bald 6 Jahre zurück und aus den alten Büchern werde ich
> nicht richtig schlau.
>  
> Klar könnte ich das Ergebnis per Baumdiagramm lösen, doch
> da ich das Experiment weiter abwandeln will (mehr Ebenen/
> 100 statt 10 Würfelversuche) fürchte ich um die Übersicht.
>  
> Die inverse Wahrscheinlichkeit, nichts zu gewinnen beträgt
> (5 /6) ^10, die Wahrscheinlichkeit mindestens einmal 100
> Euro zu gewinnen also 83%.

[ok]
  

> Doch wie stelle ich es an die durchschnittliche Anzahl an
> 6er, sprich 100 Euro-Gewinnen zu berechnen?

Es handelt sich hier um die 10malige Durchführung desselben Versuches, der nur zwei Ausgänge hat: Eine Sechs oder keine Sechs.
Dies ist ein so genannter Bernoulli-Versuch. Die Anzahl X der Treffer ist binomialverteilt:

[mm] $P(X=k)={n\choose k}p^k(1-p)^{n-k}$ [/mm]

Dabei ist k die vorgegebene Anzahl der Treffer, P(X=k) die W'keit für k Treffer, p die W'keit des Treffers bei der einmaligen Durchführung und n die Anzahl der Durchführungen.

Die Frage ist nun, wie viele Treffer durchschnittlich zu erwarten sind, also der Erwartungswert. Für eine binomialverteilte Zufallsvariable (wie das X oben) gilt
$E(X)=n*p$

Wie Du in Deinem zweiten Beitrag richtig berechnet hast, ist mit [mm] $10*\bruch{1}{6}$ [/mm] Sechsen zu rechnen, die durchschnittlichen finanziellen Ausgaben pro Gewinner betragen also [mm] $100*10*\bruch{1}{6}\approx [/mm] 166{,}67$

Viele Grüße,
Marc

Bezug
                
Bezug
Kombinatorik: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:39 Di 31.10.2006
Autor: thePan

Tausend Dank für diese intensive Aufrisch-Kur!

*küsschen* ;)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de