www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Komplexität & Berechenbarkeit" - Kombinatorik
Kombinatorik < Komplex. & Berechnb. < Theoretische Inform. < Hochschule < Informatik < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Komplexität & Berechenbarkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kombinatorik: beweis...
Status: (Frage) beantwortet Status 
Datum: 15:30 So 13.01.2008
Autor: Yas

Hallo alle!
A)
Zeigen Sie, dass es immer eine zahl n, so dass für $ [mm] i,j\in\IN [/mm] $ gilt

[mm] {n\choose i} [/mm] = [mm] {n\choose j} [/mm]

B)
Zeigen Sie zusätzlich, dass dieses n eindeutig bestimmt ist.

und Was meint er mit (dieses n eindeutig bestimmt) ??

Danke!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Kombinatorik: Einstiegshilfe
Status: (Antwort) fertig Status 
Datum: 17:05 So 13.01.2008
Autor: Zwerglein

Hi, Yas,

> Hallo alle!
>  A)
> Zeigen Sie, dass es immer eine zahl n, so dass für
> [mm]i,j\in\IN[/mm] gilt
>  
> [mm]{n\choose i}[/mm] = [mm]{n\choose j}[/mm]

Du kennst doch sicher die Formel: [mm] \vektor{n \\ k} [/mm] = [mm] \vektor{n \\ n-k} [/mm]
Daraus ergibt sich ein Hinweis darauf, wie Du n berechnen kannst!
(Tipp: Berechne mal i+j !)

> B)
>  Zeigen Sie zusätzlich, dass dieses n eindeutig bestimmt
> ist.
>  
> und Was meint er mit (dieses n eindeutig bestimmt) ??

Nun: Es gibt halt nur dieses eine n, dass Du unter A) bestimmt hast.
Die Eindeutigkeit wirst Du vermutlich mit Hilfe eines Widerspruchsbeweises nachweisen können.

mfG!
Zwerglein

Bezug
                
Bezug
Kombinatorik: Es ist immer noch schwer
Status: (Frage) beantwortet Status 
Datum: 18:20 So 13.01.2008
Autor: Yas

Hallo!
Kannst du bitte noch ein Tipp geben?? Es ist immer noch schwer, ich habe probleme mit beweise :(
ich hasse beweise!
Danke!

Bezug
                        
Bezug
Kombinatorik: Antwort
Status: (Antwort) fertig Status 
Datum: 18:56 So 13.01.2008
Autor: Zwerglein

Hi, Yas,

Du hast aber mittlerweile gecheckt, dass n=i+j sein muss, oder?

Gut dann nimm' dich einfach an, es gäbe ein [mm] n^{*} [/mm] für das die Gleichung auch erfüllt ist, für das aber gilt:

[mm] n^{*} [/mm] = i+j + k (mit ganzer Zahl k)

Und dann formst Du die Gleichung
[mm] \vektor{i+j+k \\ i} [/mm] = [mm] \vektor{i+j+k \\ j} [/mm] solange um, bis Du eine Gleichung findest, die offensichtlich nur zwei verschiedene Schlüsse zulässt, nämlich:

(1) i = j      oder (2) k = 0.

mfG!
Zwerglein


Bezug
                                
Bezug
Kombinatorik: Ach ;)
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:19 So 13.01.2008
Autor: Yas

Hi,

Ach wie einfach... Ich liebe Beweise lol
Vielen, Vielen,, Vielen,,, Dank!

M.V.L.G.
Yaseen

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Komplexität & Berechenbarkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de