www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Kombinatorik" - Kombinatorik
Kombinatorik < Kombinatorik < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kombinatorik: Hilfestellung
Status: (Frage) beantwortet Status 
Datum: 13:17 So 18.05.2008
Autor: Nette20

Aufgabe
Es sei eine Urne mit genau 3weißen und 2schwarzen Kugeln gegeben. Seien in der zweiten Urne genau 4weiße und 2schwarze Kugeln enthalten. Man zieht nun zwei Kugeln aus der ersten Urne und legt sie in die zweite Urne. Wie hoch ist die Wahrscheinlichkeit aus der zweiten, nun gefüllten Urne, eine weiße Kugel zu ziehen.

Hallo!
Ich habe mir zuerst einmal angesehen, wie wahrscheinlich es ist bestimmte Kombinationen aus der ersten Urne zu ziehen.
(i) 2*w = [mm] \bruch{\vektor{3 \\ 2}}{\vektor{5 \\ 2}} [/mm] = [mm] \bruch{3}{10} [/mm]
(ii) 2*s = [mm] \bruch{\vektor{2 \\ 2}}{\vektor{5 \\ 2}} [/mm] = [mm] \bruch{1}{10} [/mm]
(iii) 1*w+1*s= [mm] \bruch{\vektor{3 \\ 1} * \vektor{2 \\ 1}}{\vektor{5 \\ 2}} [/mm] = [mm] \bruch{6}{10} [/mm]

zu (i): die zweite Urne verändert sich dann zu: 6w und 2s
zu (ii): die zweite Urne verändert sich dann zu: 4w und 4s
zu (iii): die zweite Urne verändert sich dann zu: 5w und 3s

Ich wollte nun so weiterrechnen:
zu (i) [mm] \bruch{\vektor{6 \\ 1}}{\vektor{8 \\ 1}} [/mm] = [mm] \bruch{3}{4} [/mm]
zu (ii) [mm] \bruch{\vektor{4 \\ 1}}{\vektor{8 \\ 1}} [/mm] = [mm] \bruch{1}{2} [/mm]
zu (iii) [mm] \bruch{\vektor{5 \\ 1}}{\vektor{8 \\ 1}} [/mm] = [mm] \bruch{5}{8} [/mm]

Das muss ja falsch sein.
Wo liegt mein Fehler?

Und wie kann ich die Wahrscheinlichkeiten der ersten Zeihung mit den Wahrscheinlichkeiten der zweiten Ziehung vereinigen?

Vielen Dank!
Janett

        
Bezug
Kombinatorik: Antwort
Status: (Antwort) fertig Status 
Datum: 13:24 So 18.05.2008
Autor: abakus


> Es sei eine Urne mit genau 3weißen und 2schwarzen Kugeln
> gegeben. Seien in der zweiten Urne genau 4weiße und
> 2schwarze Kugeln enthalten. Man zieht nun zwei Kugeln aus
> der ersten Urne und legt sie in die zweite Urne. Wie hoch
> ist die Wahrscheinlichkeit aus der zweiten, nun gefüllten
> Urne, eine weiße Kugel zu ziehen.
>  Hallo!
>  Ich habe mir zuerst einmal angesehen, wie wahrscheinlich
> es ist bestimmte Kombinationen aus der ersten Urne zu
> ziehen.
>  (i) 2*w = [mm]\bruch{\vektor{3 \\ 2}}{\vektor{5 \\ 2}}[/mm] =
> [mm]\bruch{3}{10}[/mm]
>  (ii) 2*s = [mm]\bruch{\vektor{2 \\ 2}}{\vektor{5 \\ 2}}[/mm] =
> [mm]\bruch{1}{10}[/mm]
>  (iii) 1*w+1*s= [mm]\bruch{\vektor{3 \\ 1} * \vektor{2 \\ 1}}{\vektor{5 \\ 2}}[/mm]
> = [mm]\bruch{6}{10}[/mm]
>  
> zu (i): die zweite Urne verändert sich dann zu: 6w und 2s
>  zu (ii): die zweite Urne verändert sich dann zu: 4w und
> 4s
>  zu (iii): die zweite Urne verändert sich dann zu: 5w und
> 3s
>  
> Ich wollte nun so weiterrechnen:
>  zu (i) [mm]\bruch{\vektor{6 \\ 1}}{\vektor{8 \\ 1}}[/mm] =
> [mm]\bruch{3}{4}[/mm]
>  zu (ii) [mm]\bruch{\vektor{4 \\ 1}}{\vektor{8 \\ 1}}[/mm] =
> [mm]\bruch{1}{2}[/mm]
>  zu (iii) [mm]\bruch{\vektor{5 \\ 1}}{\vektor{8 \\ 1}}[/mm] =
> [mm]\bruch{5}{8}[/mm]
>  
> Das muss ja falsch sein.
>  Wo liegt mein Fehler?
>  
> Und wie kann ich die Wahrscheinlichkeiten der ersten
> Zeihung mit den Wahrscheinlichkeiten der zweiten Ziehung
> vereinigen?

Am besten, indem du den Formel-Firlefanz erst mal bei Seite lässt und ein Baumdiagramm machst.
Viele Grüße
Abakus


>  
> Vielen Dank!
>  Janett


Bezug
                
Bezug
Kombinatorik: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 13:49 So 18.05.2008
Autor: Nette20


> Am besten, indem du den Formel-Firlefanz erst mal bei Seite
> lässt und ein Baumdiagramm machst.
>  Viele Grüße
>  Abakus

Hi Abakus!
Habe für die erste Urne ein Baumdiagramm erstellt und meine Zahlen bestätigt bekommen.

Auch meine zweiten Rechnungen haben sich bestätigt.
Wenn ich aus der ersten Ziehung 2*w in die zweite Urne fülle, dann habe ich eine Wahrscheinlichkeit von [mm] \bruch{6}{8} [/mm] = 0,75 für w.

Wenn ich aus der ersten Ziehung 2*s in die zweite Urne fülle, dann habe ich eine Wahrscheinlichkeit von [mm] \bruch{4}{8} [/mm] = 0,5 für w.

Wenn ich aus der ersten Ziehung 1*w+1*s in die zweite Urne fülle, dann habe ich eine Wahrscheinlichkeit von [mm] \bruch{5}{8} [/mm] = 0,625 für w.

Aber wie nun weiter?
Wie vereinige ich diese drei Möglichkeiten aus der ersten Urne zu ziehen und die zwei Kugeln in die zweite Urne zu füllen und dann wieder zu ziehen?

Wenn ich aus den zwei Baumdiagrammen eins mache, dann komme ich auf:
www= [mm] \bruch{3}{5} [/mm] * [mm] \bruch{1}{2} [/mm] * [mm] \bruch{3}{4} [/mm] = [mm] \bruch{9}{40} [/mm]
wsw= [mm] \bruch{3}{5} [/mm] * [mm] \bruch{1}{2} [/mm] * [mm] \bruch{5}{8} [/mm] = [mm] \bruch{3}{16} [/mm]
sww= [mm] \bruch{2}{5} [/mm] * [mm] \bruch{3}{4} [/mm] * [mm] \bruch{5}{8} [/mm] = [mm] \bruch{3}{16} [/mm]
ssw= [mm] \bruch{2}{5} [/mm] * [mm] \bruch{1}{4} [/mm] * [mm] \bruch{1}{2} [/mm] = [mm] \bruch{1}{20} [/mm]

www+wsw+sww+ssw = [mm] \bruch{13}{20} [/mm]

(Zur Kontrolle: wws + wss + sws + sss = [mm] \bruch{7}{20} [/mm] )

Also ist das Ergebnis [mm] P=\bruch{13}{20} [/mm] ?

LG
Janett

Bezug
                        
Bezug
Kombinatorik: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:22 Di 20.05.2008
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de