www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Sonstiges" - Kombinatorik
Kombinatorik < Sonstiges < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kombinatorik: Frage
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 14:03 Do 05.05.2005
Autor: squeezer

Hallo

Ich hab folgende Aufgabe zu bearbeiten:

Gegeben sei eine Menge M und eine Zerlegung:
M = [mm] \bigcup_{j=1}^{n} M_{j} [/mm] von M.
Es sei [mm] m_{j} [/mm] := [mm] |M_{j}|. [/mm] WIe viele Teilmengen von T von M gibt es, die aus jedem [mm] M_{j} [/mm] ein Element (vieleicht aber auch keines) enthalten.

Ich weiss leider nicht genau wie ich die Sachen angehen soll. Ich habe mir 2 3-elementige Beispielmengen ausgesucht aber ich kriegs irgendwie nicht gebacken... Geschweige denn für beliebige Mengen. Zudem weiss ich nicht genau was es mit der Angabe "vieleicht aber auch keines" auf sich hat.

Vielen Dank für eure Hilfe

Marc

        
Bezug
Kombinatorik: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:40 Do 05.05.2005
Autor: Hanno

Hallo Squeezer!

Soll gemeint sein: man finde die Anzahl aller Teilmengen $T$ von $M$, die für alle [mm] $j\in\IN, 1\leq j\leq [/mm] n$ höchstens ein Element mit [mm] $M_j$ [/mm] gemeinsam haben?


Liebe Grüße,
Hanno

Bezug
                
Bezug
Kombinatorik: Wenn ja, dann...
Status: (Antwort) fertig Status 
Datum: 15:04 Do 05.05.2005
Autor: Hanno

Hallo nochmals!

Wenn [mm] $|T\cap M_j|\leq [/mm] 1, [mm] 1\leq j\leq [/mm] n$ sein soll, dann gibt es genau [mm] $\produkt_{j=1}^{n}|m_j+1|$ [/mm] solcher Teilmengen. Dies kann wie folgt eingesehen werden: du wählst aus jeder der [disjunkten] Mengen [mm] $M_j,1\leq j\leq [/mm] n$ entweder genau eines oder kein Element. Insgesamt hast du also für die Menge [mm] $M_j$ [/mm] genau [mm] $|M_j|+1=m_j+1$ [/mm] Auswahlmöglichkeiten. Dies führt direkt zu obigem Ergebnis. Ein Spezialfall, der sich ja mit der Formel auch behandeln lassen muss (eine Art Kontrolle also), ist [mm] $M:=\{a_1,a_2,...,a_n\}$ [/mm] mit der Partition [mm] $M_j:=\{a_j\}, 1\leq j\leq [/mm] n$. Jede Teilmenge von $M$ beinhaltet entweder ein oder kein Element aus jeder der [mm] $M_j$, [/mm] d.h. jede Teilmenge muss in obiger Zählung mitgezählt worden sein. Da es genau [mm] $2^n$ [/mm] Teilmengen von $M$ gibt, muss demnach auch die gefundene Formel [mm] $2^n$ [/mm] als Ergebnis ausgeben - dies trifft wegen [mm] $m_j=1, 1\leq j\leq [/mm] n$ zu.


Liebe Grüße,
Hanno

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de