www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Kombinatorik
Kombinatorik < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kombinatorik: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:55 Sa 30.10.2010
Autor: muss_

Aufgabe
Eine faire Münze wird fünfmal geworfen. Geben Sie den zugehörigen Wahrscheinlichkeitsraum
(
,A,P) an, wobei Sie „Kopf“ durch 0 und „Zahl“ durch 1 kodieren.
(i) Mit welcher Wahrscheinlichkeit fällt während der Würfe irgendwann Kopf direkt
nach Zahl, d.h. es taucht die Zweiersequenz (1,0) auf? Charakterisieren Sie das
zugehörige Ereignis als Teilmenge von
.
(ii) Mit welcher Wahrscheinlichkeit erscheint die Sequenz (0,1)? Gibt es ein kurzes
Argument?
(iii) Mit welcher Wahrscheinlichkeit erscheint die Sequenz (0,0)?

Hallo zusammen,
bei der Aufgabe bin ich etwas verwirrt,

Die Wkeit dass (1,0) auftaucht ist 1/4 da es aber an verschiedenen Stellen auftauchen kann muss ich es noch permutieren wenn ich die sequent als 1 Element sehe dann habe ich 4 elementen also [mm] \vektor{4 \\ 1} [/mm] = 4

1/4 * 4 = 1  ????

Was mache ich falsch??

        
Bezug
Kombinatorik: Antwort
Status: (Antwort) fertig Status 
Datum: 01:25 So 31.10.2010
Autor: reverend

Hallo muss_,

das stimmt so noch nicht.

> Eine faire Münze wird fünfmal geworfen. Geben Sie den
> zugehörigen Wahrscheinlichkeitsraum
>  (
>  ,A,P) an, wobei Sie „Kopf“ durch 0 und „Zahl“
> durch 1 kodieren.
>  (i) Mit welcher Wahrscheinlichkeit fällt während der
> Würfe irgendwann Kopf direkt
>  nach Zahl, d.h. es taucht die Zweiersequenz (1,0) auf?
> Charakterisieren Sie das
>  zugehörige Ereignis als Teilmenge von
> .
>  (ii) Mit welcher Wahrscheinlichkeit erscheint die Sequenz
> (0,1)? Gibt es ein kurzes
>  Argument?
>  (iii) Mit welcher Wahrscheinlichkeit erscheint die Sequenz
> (0,0)?
>  Hallo zusammen,
>  bei der Aufgabe bin ich etwas verwirrt,
>  
> Die Wkeit dass (1,0) auftaucht ist 1/4

Bei zwei bestimmten aufeinanderfolgenden Würfen, z.B. dem dritten und vierten, ja.

> da es aber an
> verschiedenen Stellen auftauchen kann muss ich es noch
> permutieren

Hmm. Das berücksichtigt nicht alles.

> wenn ich die sequent als 1 Element sehe dann
> habe ich 4 elementen also [mm]\vektor{4 \\ 1}[/mm] = 4

Spreek je trouwens Nederlands? Het lijkt een beetje alsof...

Das kann ich nicht ganz nachvollziehen. Meinst Du, dass es vier Stellen geben kann, an denen die Abfolge (1,0) stehen kann? Das stimmt natürlich.

> 1/4 * 4 = 1  ????

Die "zweite 4" müsste hier natürlich im Kehrwert stehen. Aber selbst dann stimmt das Ergebnis ganz und gar nicht. Die Vorgehensweise ist schwierig. Du müsstest einen erheblichen Aufwand treiben, um sicher zu gehen, dass Du die richtige Wahrscheinlichkeit und mithin alle möglichen Fälle erfasst, aber jeden nur einmal. Was ist mit der Wurffolge 01010? Kommt sie in Deiner Rechnung vor? Und wenn ja, wie oft?

Einfacher ist die Rechnung über das Gegenereignis. Unter den 32 geordneten Ergebnissen gibt es ja welche, in denen die Abfolge (1,0) nicht vorkommt.
Dazu gibt es nur zwei Regeln:
Einer 1 darf keine 0 folgen.
Einer 0 darf keine 1 vorausgehen.

Es genügt, die Gegenereignisse mit einer dieser beiden Regeln zu konstruieren. Du wirst feststellen, dass es nur sechs Wurffolgen gibt, in denen (1,0) nicht vorkommt.

Bei b) wirst Du Dir diese Arbeit nicht noch einmal machen müssen.

Bei c) ist die Sache etwas schwieriger, aber auch hier scheint mir das Gegenereignis der leichtere Ansatz. Wieder gibt es zwei Regeln:
Einer 0 darf keine 0 folgen.
Einer 0 darf keine 0 vorausgehen.
Um zu testen, ob Du alle Möglichkeiten bedacht hast, sind 10111, 10101 und 01101 gute Wurffolgen.

Grüße
reverend

> Was mache ich falsch??


Bezug
                
Bezug
Kombinatorik: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 07:32 So 31.10.2010
Autor: muss_

Ich hatte einen Weg gesucht um nicht alles zu schreiben aber mit den Gegenereignis klappt es gut.
Vielen Dank.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de