www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Stochastik-Sonstiges" - Kombinatorische Begr. Pascal
Kombinatorische Begr. Pascal < Sonstiges < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kombinatorische Begr. Pascal: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:27 Mi 23.11.2011
Autor: DietmarP

Aufgabe
Man gebe für die Pascal Identität eine kombinatorische Begründung. (Anleitung: Sei x eine Menge mit n Elementen. Sei y eine Teilmenge von x mit (n-1) Elementen. Jede Teilmenge  von X mit k elemtenen ist entweder eine Teilmenge von Y mit k Elementen oder die Vereinigungsmenge einer Teilmenge von Y mit (k-1) Elemnten mit einer einelementigen Teilmenge von X. Was kann über die Anzahlen solcher Teilmengen gesagt werden.

Hallo!

Müsste das obrige Beispiel bis morgen vormittag lösen. Leider habe ich keine Ahnung was ich tun soll. Könnte mir jemand bitte mal die Aufgabe genau erklären was überhaupt zu tun ist? und wie ich auf eine Lösung komme? Habe leider überhaupt keine Ahnung was ich tun soll und wie ich die Aufgabe lösen soll.

Danke im voraus

mfg

        
Bezug
Kombinatorische Begr. Pascal: Antwort
Status: (Antwort) fertig Status 
Datum: 11:48 Mi 23.11.2011
Autor: Al-Chwarizmi


> Man gebe für die Pascal Identität eine kombinatorische
> Begründung. (Anleitung: Sei x eine Menge mit n Elementen.
> Sei y eine Teilmenge von x mit (n-1) Elementen. Jede
> Teilmenge  von X mit k elemtenen ist entweder eine
> Teilmenge von Y mit k Elementen oder die Vereinigungsmenge
> einer Teilmenge von Y mit (k-1) Elemnten mit einer
> einelementigen Teilmenge von X. Was kann über die Anzahlen
> solcher Teilmengen gesagt werden.
>  Hallo!
>  
> Müsste das obrige Beispiel bis morgen vormittag lösen.

... du hast die Aufgabe offenbar erst gerade heute erhalten ... (??)

> Leider habe ich keine Ahnung was ich tun soll. Könnte mir
> jemand bitte mal die Aufgabe genau erklären was überhaupt
> zu tun ist? und wie ich auf eine Lösung komme? Habe leider
> überhaupt keine Ahnung was ich tun soll und wie ich die
> Aufgabe lösen soll.
>  
> Danke im voraus
>  
> mfg


Du hättest doch wenigstens auch noch angeben können, was
mit der  "Pascal Identität" gemeint sein soll ! Das ist nämlich
kein stehender Ausdruck bzw. wird auch noch für wenigstens
eine andere (schwieriger zu zeigende) Identität benützt.
Die zu beweisende Gleichung wurde euch bestimmt angegeben.

Ich habe jetzt gemerkt, um welche Identität es offenbar gehen
soll.

Schreib halt mal auf (mittels Binomialkoeffizienten), welche
Anzahlen an Elementen die betrachteten Mengen von Teilmengen
von X haben:

    1.) die Menge aller k-elementigen Mengen von X
    2.) die Menge aller k-elementigen Mengen von Y
    3.) die Menge aller (k-1)-elementigen Mengen von Y

Du kannst auch ein wenig mit Beispielen spielen (nimm dazu
einfach ein paar Gegenstände, die du gerade zur Hand hast,
um die Elemente von X zu repräsentieren) und rechnen,
damit dir klar wird, worum es bei dem Beweis wirklich geht.  

LG   Al-Chw.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de