www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Prozesse und Matrizen" - Kommutation von Matrizen
Kommutation von Matrizen < Prozesse+Matrizen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Prozesse und Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kommutation von Matrizen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:09 Mi 30.12.2009
Autor: distress

Aufgabe
Bestimme zur Matrix A  [mm] \pmat{ 2 & 1 & 0 \\ 1 & 2 & 1 \\ 2 & 4 & 2 } [/mm] alle Matrizen F mit A * F = F * A = [mm] \pmat{ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 } [/mm]

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt!

mein Lösungsansatz sieht wie folgt aus

A * F
2a+1d+0g 2b+1e+0h 2c+1f+0i
1a+2d+1g 1b+2e+1h 1c+2f+1i
2a+4d+2g 2b+4e+2h 2c+4f+2i

F * A
2a+1b+2c 1a+2b+4c 0a+1b+2c
2d+1e+2f 1d+2e+4f 0d+1e+2f
2g+1h+2i 1g+2h+4i 0g+1h+2i

Jetzt würde ich aus der A*F Matrix und der F*A Matrix Gleichungen wie z.B. 2a + d = 2a + b + 2c aufstellen, so dass ich dann 9 Gleichungssysteme hätte. Nur stellt sich für mich die Frage, ob ich diese nach null auflösen muss wie z.B:
2a + d = 2a + b + 2c          | -2a
d = b + 2c        | -b -2c
d – b – 2c = 0

oder ob ich diese beispielsweise nach Variable d umstellen muss.

Vielen Dank schonmal.

        
Bezug
Kommutation von Matrizen: Antwort
Status: (Antwort) fertig Status 
Datum: 23:08 Mi 30.12.2009
Autor: Merle23


> Bestimme zur Matrix A  [mm]\pmat{ 2 & 1 & 0 \\ 1 & 2 & 1 \\ 2 & 4 & 2 }[/mm]
> alle Matrizen F mit A * F = F * A = [mm]\pmat{ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 }[/mm]
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt!
>  
> mein Lösungsansatz sieht wie folgt aus
>  
> A * F
>  2a+1d+0g 2b+1e+0h 2c+1f+0i
>  1a+2d+1g 1b+2e+1h 1c+2f+1i
>  2a+4d+2g 2b+4e+2h 2c+4f+2i
>  
> F * A
>  2a+1b+2c 1a+2b+4c 0a+1b+2c
>  2d+1e+2f 1d+2e+4f 0d+1e+2f
>  2g+1h+2i 1g+2h+4i 0g+1h+2i
>  
> Jetzt würde ich aus der A*F Matrix und der F*A Matrix
> Gleichungen wie z.B. 2a + d = 2a + b + 2c aufstellen, so
> dass ich dann 9 Gleichungssysteme hätte. Nur stellt sich
> für mich die Frage, ob ich diese nach null auflösen muss
> wie z.B:
> 2a + d = 2a + b + 2c          | -2a
>  d = b + 2c        | -b -2c
>  d – b – 2c = 0
>  
> oder ob ich diese beispielsweise nach Variable d umstellen
> muss.

Du musst F*A=0=A*F rauskriegen, d.h. du musst einfach alle 18 Terme gleich Null setzen.

Es gebe aber auch eine ganz andere Methode. Man könnte z.B. auch über die Eigenräume von A gehen.

LG, Alex

Bezug
                
Bezug
Kommutation von Matrizen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:34 Do 31.12.2009
Autor: distress


> Du musst F*A=0=A*F rauskriegen, d.h. du musst einfach alle
> 18 Terme gleich Null setzen.
>  
> Es gebe aber auch eine ganz andere Methode. Man könnte
> z.B. auch über die Eigenräume von A gehen.
>  
> LG, Alex

Ok, ich hoffe ich habe das jetzt richtig verstanden.
Also brauche ich bei den obigen Formeln nur ein "= 0" ranhängen, so dass ich 18 Terme wie z.B. 2a+1d=0 erhalte. Ist das dann ein Zwischenschritt zur Endgültigen Lösung bzw. wie geht es denn dann weiter? Ich stehe da leider noch auf dem Schlauch.

Bezug
                        
Bezug
Kommutation von Matrizen: Antwort
Status: (Antwort) fertig Status 
Datum: 02:16 Do 31.12.2009
Autor: Merle23


> > Du musst F*A=0=A*F rauskriegen, d.h. du musst einfach alle
> > 18 Terme gleich Null setzen.
>  >  
> > Es gebe aber auch eine ganz andere Methode. Man könnte
> > z.B. auch über die Eigenräume von A gehen.
>  >  
> > LG, Alex
>
> Ok, ich hoffe ich habe das jetzt richtig verstanden.
> Also brauche ich bei den obigen Formeln nur ein "= 0"
> ranhängen, so dass ich 18 Terme wie z.B. 2a+1d=0 erhalte.
> Ist das dann ein Zwischenschritt zur Endgültigen Lösung
> bzw. wie geht es denn dann weiter? Ich stehe da leider noch
> auf dem Schlauch.

Ja dann löste einfach das Gleichungssystem (welches dann 18 Gleichungen und 9 Unbekannte hat). LG, Alex

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Prozesse und Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de