www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Matrizen" - Kommutatorbeziehung Operatoren
Kommutatorbeziehung Operatoren < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kommutatorbeziehung Operatoren: Idee
Status: (Frage) beantwortet Status 
Datum: 11:46 Mo 19.11.2012
Autor: richardducat

Aufgabe
In einem dreidimensionalen Hilbertraum sei der Hamiltonoperator

H= [mm] \pmat{ h_1 & 0 & 0\\ 0 & h_1 & 0 \\ 0 & 0 & h_2 } h_1,h_2 \in \IR [/mm]

gegeben. Geben Sie zwei Operatoren [mm] A_1, A_2 [/mm] an, die mit H vertauschen, aber nicht untereinander. (Es soll also gelten [mm] [A_1,H]=[A_2,H]=0, [A_1,A_2]\not=0) [/mm]

Hallo Leute,

ich würde zuerst  die Eigenzustände von H berechnen. Die Eigenwerte lassen sich direkt ablesen. Sie sind außerdem entartet.
Es lassen sich drei Eigenzustände berechnen.
Ich nehme an, dass ich die Operatoren [mm] A_1, A_2 [/mm] als Matrix angeben soll.

Da [mm] [A_1,H]=0 [/mm] gibt es gemeinsame Eigenzustände für [mm] A_1 [/mm] und H.
Dann könnte ich doch mit den ausgerechneten EZ von H den [mm] A_1 [/mm] konstruieren.
Leider habe ich keine Idee wie ich [mm] A_2 [/mm] angeben kann, da [mm] A_2 [/mm] nicht dieselben EZ haben darf wie [mm] A_1. [/mm]

Vielleicht fällt euch etwas ein?

Gruß Richard

        
Bezug
Kommutatorbeziehung Operatoren: Antwort
Status: (Antwort) fertig Status 
Datum: 09:19 Di 20.11.2012
Autor: rainerS

Hallo!

> In einem dreidimensionalen Hilbertraum sei der
> Hamiltonoperator
>  
> H= [mm]\pmat{ h_1 & 0 & 0\\ 0 & h_1 & 0 \\ 0 & 0 & h_2 } h_1,h_2 \in \IR[/mm]
>  
> gegeben. Geben Sie zwei Operatoren [mm]A_1, A_2[/mm] an, die mit H
> vertauschen, aber nicht untereinander. (Es soll also gelten
> [mm][A_1,H]=[A_2,H]=0, [A_1,A_2]\not=0)[/mm]
>  Hallo Leute,
>  
> ich würde zuerst  die Eigenzustände von H berechnen. Die
> Eigenwerte lassen sich direkt ablesen. Sie sind außerdem
> entartet.
>  Es lassen sich drei Eigenzustände berechnen.
> Ich nehme an, dass ich die Operatoren [mm]A_1, A_2[/mm] als Matrix
> angeben soll.
>  
> Da [mm][A_1,H]=0[/mm] gibt es gemeinsame Eigenzustände für [mm]A_1[/mm] und
> H.
>  Dann könnte ich doch mit den ausgerechneten EZ von H den
> [mm]A_1[/mm] konstruieren.
> Leider habe ich keine Idee wie ich [mm]A_2[/mm] angeben kann, da [mm]A_2[/mm]
> nicht dieselben EZ haben darf wie [mm]A_1.[/mm]
>  
> Vielleicht fällt euch etwas ein?

Ich würde von den Operatoren ausgehen, die du kennst, und sie auf die gewünschten Eigenschaften überprüfen.

Tipp: der genannte Hamiltonoperator ist invariant bei Rotationen um die dritte Koordinatenachse.

Viele Grüße
   Rainer

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de