www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Topologie und Geometrie" - Kompakte Teilmengen nor. Räume
Kompakte Teilmengen nor. Räume < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kompakte Teilmengen nor. Räume: Frage
Status: (Frage) beantwortet Status 
Datum: 23:46 So 01.05.2005
Autor: Mathemagier

Hallo zusammen!

Ich sitze mittlerweile schon 2 Stunden vor dieser blöden Hausaufgabe, mittlerweile sehe ich wahrscheinlich den Wald vor lauter Bäumen nicht mehr.

Sei E ein unendlich dim. norm. Raum. Beweise, dass jede kompakte Teilmenge von E nirgends dicht ist.

Meine bisherigen Überlegungen:
Sei C eine kompakte Teilmenge von E. C ist kompakt und daher abgeschlossen (E ist normiert, daher Hausdorff-Raum, jede kompakte Teilmenge eine H-Raums ist abgeschlossen).
Nirgends dicht heißt, dass das Innere des Abschlusses von C leer ist. Meine Idee war jetzt, das Ganze durch einen Widerspruch zu zeigen.
Zu zeigen ist also, dass das Innere vom Abschluss von C leer ist:
Sei x ein innerer Punkt von C. Daher kann um x eine offene [mm] $\epsilon$-Kugel [/mm] konstruiert werden, die ganz in C liegt.
Daher ist [mm] $B_{\epsilon}(x) \cap [/mm] E  [mm] \subseteq [/mm] C$.
So, weiter komme ich nicht. Das hat doch irgendwas mit dieser Hausdorff-Eigenschaft oben zu tun, oder? Kann ich jetzt einen geschlossene Eps-Kugel konstruieren und die irgendwie mit der offenen "vergleichen"? Wie komme ich dann zum Widerspruch?

Für Tipps wäre ich sehr dankbar.
Liebe Grüße, Andreas

        
Bezug
Kompakte Teilmengen nor. Räume: Antwort
Status: (Antwort) fertig Status 
Datum: 09:24 Mo 02.05.2005
Autor: banachella

Hallo!

Ich glaube, dass man so auf einen Widerspruch kommt:
Angenommen, die kompakte Menge $C$ sei nicht nirgends dicht, das heißt, [mm] $\widehat C:={\overline C}^\circ\ne\emptyset$. [/mm] Da [mm] $\widehat [/mm] C$ offen ist gibt es einen Punkt [mm] $x\in\hat [/mm] C$ und ein [mm] $\varepsilon [/mm] >0$, so dass [mm] $U_\varepsilon(x)\subset \hat [/mm] C$. Da [mm] $\widehat C\subset [/mm] C$ (denn eigentlich ist ja [mm] $\widehat C=C^\circ$...) [/mm] ist [mm] $U_\varepsilon(x)\subset [/mm] C$ und damit [mm] $\overline{U_\varepsilon(x)}\subset [/mm] C$. Also abgeschlossene Teilmenge einer kompakten Menge ist [mm] $\overline{U_\varepsilon(x)}$ [/mm] kompakt. Aber das ist ein Widerspruch! Denn nach dem Satz von Riesz ist eine Kugel genau dann kompakt, wenn der normierte Raum endlich dimensional ist.

Gruß, banachella

Bezug
                
Bezug
Kompakte Teilmengen nor. Räume: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:39 Mo 02.05.2005
Autor: Mathemagier

Vielen Dank für die Antwort, banachella!
Der Satz von Riesz war bei mir der Knackpunkt, woran es scheiterte.
Ideen muss man haben ;-)
Viele Grüße,
Andreas

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de