www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Topologie und Geometrie" - Kompaktheit Teilmengen
Kompaktheit Teilmengen < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kompaktheit Teilmengen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:02 Mo 31.01.2011
Autor: hula

Hi zusammen

Es gibt ja den Satz, dass wenn $\ X $ ein topologischer Raum ist und kompakt, dann gilt für $\ Y [mm] \subset [/mm] X $ abgeschlossen, dass $\ Y $ ebenfalls kompakt ist.
Nun zu meiner Frage, muss nicht jede Teilmenge eines kompakten Raumes wieder kompakt sein? Mein Beweis würde so gehen:

Sei $\ [mm] \mathcall{O} [/mm] $ eine offene Überdeckung von X. Dann ist dies doch sicherlich auch eine offene Überdeckung von Y. Da X kompakt ist, gibt es eine endliche Teilüberdeckung $\ [mm] \{O_1,\dots,O_n | O_i \in \matcall{O}\} [/mm] $ die X überdeckt und somit auch Y.
Annmerkung: Es gilt ja der Satz, dass $\ Y [mm] \subset [/mm] X $ genau dann kompakt ist, wenn jede offene Überdeckung (mit offenen Mengen aus X) von Y eine endliche Teilüberdeckugn von Y besitzen.

Dann könnte ich doch schliessen, dass jeder Teilraum eines kompakten Raumes wieder kompakt ist. Wieso formuliert man dann den Satz mit einer abgeschlossenen Menge? Oder kann mir jemand den Fehler im obigen Beweis nennen.

hula

        
Bezug
Kompaktheit Teilmengen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:14 Mo 31.01.2011
Autor: Gonozal_IX

Huhu,

> Es gibt ja den Satz, dass wenn [mm]\ X[/mm] ein topologischer Raum
> ist und kompakt, dann gilt für [mm]\ Y \subset X[/mm]
> abgeschlossen, dass [mm]\ Y[/mm] ebenfalls kompakt ist.
> Nun zu meiner Frage, muss nicht jede Teilmenge eines
> kompakten Raumes wieder kompakt sein?

Nein, einfachstes Gegenbeispiel:

[0,1] ist kompakt, $(0,1) [mm] \subset [/mm] [0,1]$ aber offensichtlich nicht.

> Mein Beweis würde so gehen:
>  
> Sei [mm]\ \mathcall{O}[/mm] eine offene Überdeckung von X. Dann ist
> dies doch sicherlich auch eine offene Überdeckung von Y.

Jo, damit hast du aber nicht alle Überdeckungen von Y erwischt.
Denn was ist mit denen, die Y überdecken aber nicht X ?

Wenn du es für diese auch zeigen könntest, dass eine endliche Teilüberdeckung exisitiert, wärst du fertig.
Hast du aber bisher noch nicht (und wirst du aufgrund obigen Gegenbeispiels auch kaum finden ;-) )

MFG,
Gono.


Bezug
                
Bezug
Kompaktheit Teilmengen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:16 Mo 31.01.2011
Autor: hula


>
> Jo, damit hast du aber nicht alle Überdeckungen von Y
> erwischt.
>  Denn was ist mit denen, die Y überdecken aber nicht X ?
>  
> Wenn du es für diese auch zeigen könntest, dass eine
> endliche Teilüberdeckung exisitiert, wärst du fertig.
>  Hast du aber bisher noch nicht (und wirst du aufgrund
> obigen Gegenbeispiels auch kaum finden ;-) )
>  
> MFG,
>  Gono.
>  

Danke! Jetzt ist es mir klar

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de