www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Sonstiges" - Kompl. trigonom. Lösungsweg
Kompl. trigonom. Lösungsweg < Sonstiges < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kompl. trigonom. Lösungsweg: Ideen-Suche
Status: (Frage) beantwortet Status 
Datum: 00:40 So 20.01.2008
Autor: uli3

Aufgabe
Suche Lösungsweg zu
[mm] \frac{(1 - e^{- j \omega T})^m }{j \omega} [/mm] = ... = [mm] \left( 2 \cdot \sin \left( \frac{ j \omega T }{2} \right) \right)^{m-1} [/mm]  (Problem 1)

und:
(1 - [mm] e^{- j \omega T})^m [/mm] = ... (Problem 2)

Hallo zusammen!

Wie erwünscht bestätige ich: "Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt."

Das Problem ist eigentlich sehr schnell beschrieben. Ich beschäftige mich gerade mit der Laplace-Transformierten eines bestimmten Rauschprozesses, welches ich in meinem LTI System mitmodellieren möchte. Im Grunde ist es unwesentlich um was es genau geht. Ich hab es bereits auf den Kern reduziert.
Die Lösung zu Problem (1) finde ich in sämtlicher Literatur zitiert (zB V.F.Kroupa "Phase Locke Loops"). Nur finde ich nirgendswo vernünftige Zwischenschritte die mir den Übergang verständlich und nachvollziehbar machen. Ich möchte es aber verstehen, weil ich nämlich selber zuerst die Lösung zu Problem (2) herleiten möchte um dann in einem weiteren Schritt erst zu Problem (1) übergehen möchte.

Hab mit Hilfe von Formelsammlungen schon sämtliche trigonometrischen Zusammenhänge speziell im Zusammenhang mit der komplexen Exponentialfunktion versucht einzusetzen, aber irgendwie fehlt mir hier glaub ich noch eine entscheidende Idee.
Da auch keine weiteren Bedingungen zitiert werden geh ich auch nicht davon aus, dass es via Reihenentwicklung gelöst wurde.

Bin eigentlich schon fast am Verzweifeln, weswegen ich mich auch an euch wenden möchte. Befürchte nur, dass die Lösung zu einfach ist ...

Wenn mir jemand hier ein paar entscheidenen Hinweise geben kann, wäre ich sehr dankbar.

Gruß, uli

PS: die paar trigonometrische zusammenhänge die mir wichtig erschienen
http://de.wikipedia.org/wiki/Formelsammlung_Trigonometrie#Zusammenhang_mit_der_komplexen_Exponentialfunktion
http://de.wikipedia.org/wiki/Formelsammlung_Trigonometrie#Halbwinkelformeln
http://de.wikipedia.org/wiki/Formelsammlung_Trigonometrie#Potenzen_der_Winkelfunktionen
(hab keine besseren zitate gefunden, da Bronstein auch nicht online. Alle Formeln will ich auch nicht aufzählen)...

        
Bezug
Kompl. trigonom. Lösungsweg: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 01:13 So 20.01.2008
Autor: leduart

Hallo
Es ist zu spät, um das durchzuziehen, aber ich würd einfach [mm] e^{-jwT/2} [/mm] ausklammern, dann steht da schon mal sin.
Gruss leduart

Bezug
                
Bezug
Kompl. trigonom. Lösungsweg: Danke!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:02 Mo 21.01.2008
Autor: uli3

Aufgabe
Problem (1):
... muss ich umdefinieren
(Problem 2)
... gelöst

Hallo Leduart,

vielen Dank für deine so späte und dennoch prompte Antwort. Die Idee war wirklich gut und hat mir ungemein geholfen.

Das Problem (2) löst sich demnach zu

(1 - [mm] e^{- j \omega T})^m [/mm] = [mm] \left( e^{-j\omega T/2} \cdot 2 \cdot j \cdot sin \left( \frac{\omega T}{2} \right) \right)^m [/mm]
eine weitere Vereinfachung scheints wohl nicht mehr zu geben ...

Weitere Recherche brachte mir dann auch noch den entscheidenden Hinweis, dass vor der Berechnung der Rauschleistung natürlich noch eine Betragsquadratbildung folgt, womit der Term '(j [mm] \cdot e^{-j\omega T/2} [/mm] ) verschwindet.

Bei Problem (1) muss ich auch weiter ausholen hab ich festgestellt. Ich werde eine neue Frage posten und auf diese Diskussion referenzieren - auch wenn es nicht weiterhelfen wird.

Vielen Dank nochmals,
Gruß, uli


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de