www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Vektoren" - Komplanarität
Komplanarität < Vektoren < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Komplanarität: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:57 So 03.04.2011
Autor: Bella2012

Aufgabe
Sind die Vektoren [mm] \vektor{1 \\ 2 \\ -1}, \vektor{1 \\ 0 \\ 3}, \vektor{3 \\ 2 \\ 5} [/mm] komplanar?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo! Ich bräuchte Hilfe bei der Interpretation meines Ergebnisses beim Gauß-Verfahren.
Zunächst habe ich die Vektoren in folgendes Schema eingesetzt:
[mm] r*\vec{a}+s*\vec{b}+t*\vec{c}=\vec{0} [/mm]
Dann habe ich ein lineares Gleichungssystem aufgestellt und es mit dem Gauß-Verfahren gelöst. Dabei kam dann eine Nullzeile heraus.
Wie ist diese nun zu interpretieren? Im Unterricht haben wir gelernt, dass die triviale Lösung (also r=s=t=0) bedeutet, dass die Vektoren nicht komplanar sind. Aber bei meiner Lösung steht ja einfach nur 0=0. Bedeutet dies, dass die Vektoren identisch sind und es unendlich viele Lösungen gibt, sprich die Vektoren komplanar sind?

Für schnelle Hilfe wäre ich sehr dankbar!
LG Bella

        
Bezug
Komplanarität: Antwort
Status: (Antwort) fertig Status 
Datum: 11:20 So 03.04.2011
Autor: Al-Chwarizmi


> Sind die Vektoren [mm]\vektor{1 \\ 2 \\ -1}, \vektor{1 \\ 0 \\ 3}, \vektor{3 \\ 2 \\ 5}[/mm]
> komplanar?

> Hallo! Ich bräuchte Hilfe bei der Interpretation meines
> Ergebnisses beim Gauß-Verfahren.
>  Zunächst habe ich die Vektoren in folgendes Schema
> eingesetzt:
>  [mm]r*\vec{a}+s*\vec{b}+t*\vec{c}=\vec{0}[/mm]
>  Dann habe ich ein lineares Gleichungssystem aufgestellt
> und es mit dem Gauß-Verfahren gelöst. Dabei kam dann eine
> Nullzeile heraus.
>  Wie ist diese nun zu interpretieren? Im Unterricht haben
> wir gelernt, dass die triviale Lösung (also r=s=t=0)
> bedeutet, dass die Vektoren nicht komplanar sind. Aber bei
> meiner Lösung steht ja einfach nur 0=0. Bedeutet dies,
> dass die Vektoren identisch sind und es unendlich viele
> Lösungen gibt, sprich die Vektoren komplanar sind?
>  
> Für schnelle Hilfe wäre ich sehr dankbar!
>  LG Bella


Hallo Bella,

natürlich sind die Vektoren nicht identisch. Dass nach
der Durchführung des Gaußverfahrens unten eine
komplette Nullzeile steht, bedeutet aber, dass sich
einer der 3 Vektoren als Linearkombination der
anderen beiden darstellen lässt, d.h. die 3 Vektoren
sind linear abhängig oder anders ausgedrückt:
komplanar.
Beachte: Natürlich wäre auch r=s=t=0 eine Lösung
deines Gleichungssystems, aber, was hier ganz
wichtig ist:  r=s=t=0 ist nicht die einzige Lösung !
Bestimme doch ein anderes Lösungstripel, um dies
wirklich klar zu machen !

LG


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de