www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Gleichungssysteme" - Komplanaritätskriterium
Komplanaritätskriterium < Lineare Gleich.-sys. < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Komplanaritätskriterium: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:34 Sa 23.06.2007
Autor: readme.txt

Aufgabe
[mm] D=\vmat{ a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \\ a_{3} & b_{3} & c_{3} } [/mm]

g: [mm] \overrightarrow{X} [/mm] = [mm] \overrightarrow{A} [/mm] + [mm] \lambda [/mm] * [mm] \vektor{ a_{1} \\ a_{2} \\ a_{3} } [/mm]
h: [mm] \overrightarrow{X} [/mm] = [mm] \overrightarrow{B} [/mm] + [mm] \mu [/mm] * [mm] \vektor{ b_{1} \\ b_{2} \\ b_{3} } [/mm]

Hallo miteinander!
Mir geht es bei meiner Frage insbesondere um das Komplanaritätskriterium zur Überprüfung der Lage zweier Geraden zueinander (D=0 -> komplanar -> Geraden schneiden sich).
Zur Überprüfung verwende ich [mm] det(\overrightarrow{a},\overrightarrow{b},\overrightarrow{c}), [/mm] wobei a und b die Richtungsvektoren der Geraden g und h seien, und c der Vektor [mm] \overrightarrow{AB} [/mm] zwischen den beiden Aufpunkten.

Nun zu meiner konkreten Frage:
Ist die Reihenfolge wie ich a b und c in die Determinante einsetze egal?
Ich habe Lösungen gesehen wo der Vektor [mm] \overrightarrow{AB} [/mm] an erster Stelle kam, und die beiden Richtungsvektoren dann erst danach.
Sprich: ist es egal ob ich die Spalten in der Determinante untereinander tausche?

Vielen Dank!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
Komplanaritätskriterium: Antwort
Status: (Antwort) fertig Status 
Datum: 12:45 Sa 23.06.2007
Autor: Somebody


> [mm]D=\vmat{ a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \\ a_{3} & b_{3} & c_{3} }[/mm]
>  
> g: [mm]\overrightarrow{X}[/mm] = [mm]\overrightarrow{A}[/mm] + [mm]\lambda[/mm] *
> [mm]\vektor{ a_{1} \\ a_{2} \\ a_{3} }[/mm]
>  h: [mm]\overrightarrow{X}[/mm] =
> [mm]\overrightarrow{B}[/mm] + [mm]\mu[/mm] * [mm]\vektor{ b_{1} \\ b_{2} \\ b_{3} }[/mm]
>  
> Hallo miteinander!
>  Mir geht es bei meiner Frage insbesondere um das
> Komplanaritätskriterium zur Überprüfung der Lage zweier
> Geraden zueinander (D=0 -> komplanar -> Geraden schneiden
> sich).
>  Zur Überprüfung verwende ich
> [mm]det(\overrightarrow{a},\overrightarrow{b},\overrightarrow{c}),[/mm]
> wobei a und b die Richtungsvektoren der Geraden g und h
> seien, und c der Vektor [mm]\overrightarrow{AB}[/mm] zwischen den
> beiden Aufpunkten.
>  
> Nun zu meiner konkreten Frage:
>  Ist die Reihenfolge wie ich a b und c in die Determinante
> einsetze egal?
>  Ich habe Lösungen gesehen wo der Vektor
> [mm]\overrightarrow{AB}[/mm] an erster Stelle kam, und die beiden
> Richtungsvektoren dann erst danach.
>  Sprich: ist es egal ob ich die Spalten in der Determinante
> untereinander tausche?

Wenn Du die Spalten einer Determinante tauschst, dann ändert sich nur ihr Vorzeichen (das Vorzeichen ist positiv, falls die drei Spaltenvektoren von links nach rechts ein Rechtsystem, negativ falls sie ein Linkssystem bilden). Für Dein Problem ist das Vorzeichen aber nicht wesentlich.
Du kannst dies auch leicht daran erkennen, dass ja (in Deinem Fall von 3-dim Vektoren) gilt: [mm]\det(\vec{a},\vec{b},\vec{c})= (\vec{a}\times \vec{b})\cdot \vec{c}[/mm]. Das Skalarprodukt [mm]\cdot[/mm] ist dabei kommutativ und das Vektorprodukt [mm]\times[/mm] ist anti-kommutativ (d.h. wechselt bei Vertauschen der beiden Faktoren das Vorzeichen).

Bezug
                
Bezug
Komplanaritätskriterium: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:59 Sa 23.06.2007
Autor: readme.txt

Recht herzlichen Dank für die schnelle und klare Antwort!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de