www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Komplexe Zahlen" - Komplexe Funktionen 2
Komplexe Funktionen 2 < Komplexe Zahlen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Komplexe Funktionen 2: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:16 Mi 03.12.2008
Autor: kushkush

Aufgabe
1.
Gib eine Gleichung der Abbildung z -> w an.

Punktspiegelung am Punkt M(i)

Allgemein:Wie kann ich im komplexen Raum eine Rotation um einen anderen Punkt als 0 durchführen? Indem ich zuerst die Drehung mache und dann den Punkt selbst addiere?

Zu 1: eine Punktspiegelung ist doch eine Drehung um 180° also cis(180)= -1+0i
         und dann addiere ich noch +i hinzu da ich ja nicht beim Nullpunkt bin?                    Also: w=-z+i ? Wieso kommt dann die Lösung auf z+2i?

Ich habe diese Frage in keinem anderen Forum gestellt und bin für jede Antwort dankbar.


        
Bezug
Komplexe Funktionen 2: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:38 Mi 03.12.2008
Autor: Herby

Hallo kushkush,

> 1.
>  Gib eine Gleichung der Abbildung z -> w an.

>
> Punktspiegelung am Punkt M(i)
>  Allgemein:Wie kann ich im komplexen Raum eine Rotation um
> einen anderen Punkt als 0 durchführen? Indem ich zuerst die
> Drehung mache und dann den Punkt selbst addiere?
>
> Zu 1: eine Punktspiegelung ist doch eine Drehung um 180°
> also cis(180)= -1+0i
> und dann addiere ich noch +i hinzu da ich ja nicht beim
> Nullpunkt bin?                    Also: w=-z+i ? Wieso
> kommt dann die Lösung auf z+2i?
>
> Ich habe diese Frage in keinem anderen Forum gestellt und
> bin für jede Antwort dankbar.
>  


sorry - aber ich verstehe die ganze Frage nicht [kopfkratz3]


Meinst du vielleicht

$z\ [mm] \to\ [/mm]  w\ =\ [mm] \bruch{1}{z}$ [/mm]

eine Inversion???


Lg
Herby

Bezug
                
Bezug
Komplexe Funktionen 2: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:56 Mi 03.12.2008
Autor: kushkush

Hi ,


es geht darum dass ich einen Punkt zbsp. C habe, um den ich etwas drehen möchte...

Das funktioniert aber doch nicht so wie beim Drehen um den Nullpunkt, wo ich einfach rcis(x°)*z rechnen kann ... ?

Bezug
        
Bezug
Komplexe Funktionen 2: Antwort
Status: (Antwort) fertig Status 
Datum: 23:06 Mi 03.12.2008
Autor: leduart

Hallo
Im Prinzip ist deine Idee richtig. Nur erst Translation um hier -i. dann Spiegelung dann Zurücktranslation:
1. z=>w=z-i
2. w=>-w=-z+i
3. -w=>-w+i=-z+2i
statt i auch jedes andere c aus C.
Gruss leduart

Bezug
                
Bezug
Komplexe Funktionen 2: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:09 Mi 03.12.2008
Autor: kushkush

Hi leduart,


Wieso muss ich 2x translatieren?


Wäre dann eine Punktspiegelung am Punkt M(1+i):
-(z-1-i)+1+i ?


Bezug
                        
Bezug
Komplexe Funktionen 2: Antwort
Status: (Antwort) fertig Status 
Datum: 00:10 Do 04.12.2008
Autor: leduart

Hallo
Ja so wär es. wenn du einfach direkt an 0 spiegelst. bliebe ja z. Bsp 0 wieder 0 danach translatierst du zu i  oder 1*i und hättest also 0 genau in deinen Spiegelpunkt abgebildet.
auch der Punkt M selbst würde ja auf seine Spiegelung an 0 kommen und dann translatiert sicher nicht auf sich selbst. und dass das spiegelzentrum auf sich abgebildet wird siehst du doch wohl ein.
Am besten zeichnest du das mit einem beliebigen M und irgendnen Punkt mal auf. a) deinen Vorschlag. b meinen Vorschlag, dann siehst du das ein.
Gruss leduart

Bezug
                                
Bezug
Komplexe Funktionen 2: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:31 Di 09.12.2008
Autor: kushkush

Dankeschön

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de