www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Komplexe Zahlen" - Komplexe Gleichung
Komplexe Gleichung < Komplexe Zahlen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Komplexe Gleichung: Bitte um Ergebniskontrolle
Status: (Frage) beantwortet Status 
Datum: 21:43 So 06.03.2005
Autor: cagivamito

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo, ich habe hier einen Lösungsvorschlag, und bräuchte mal jemand, der sich das anschaut. Habe derzeit keine Sicherheit ob ich das so richtig gemacht habe.

x + 2iy = 2i³
ix + iy - y = i

Zweite Gleichung mit i multipliziert und dann mit der ersten Gleichung addiert:

-y + iy = 2i³ - 1

weiter umgeformt:

y(-1+i) = -2i - 1

...

y = (-2i - 1) / (-1 + i)

mit (-1 -i)/(-1 -i) erweitert...

Ergebnis für y:  y= -1 + 3i / 2

Heißt Realteil: -1/2
Imaginärteil: 3/2 i

Dieses Y in die erste Gleichung eingesetzt ergibt folgendes x:

x = -3i - 3

Realteil: -3
Imaginärteil: -3 i

----------------------------

Ist das soweit ok? Wäre um Antworten sehr dankbar.

Gruß Jens





        
Bezug
Komplexe Gleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 22:05 So 06.03.2005
Autor: Christian

Hi.

> x + 2iy = 2i³
>  ix + iy - y = i
>  
> Zweite Gleichung mit i multipliziert und dann mit der
> ersten Gleichung addiert:
>  
> -y + iy = 2i³ - 1
>  
> weiter umgeformt:
>  
> y(-1+i) = -2i - 1
>  
> ...
>  
> y = (-2i - 1) / (-1 + i)
>  
> mit (-1 -i)/(-1 -i) erweitert...
>  
> Ergebnis für y:  y= -1 + 3i / 2
>  
> Heißt Realteil: -1/2
>  Imaginärteil: 3/2 i

[ok] Soweit sehr gut!

> Dieses Y in die erste Gleichung eingesetzt ergibt folgendes
> x:
>  
> x = -3i - 3
>  
> Realteil: -3
>  Imaginärteil: -3 i

Hier hab ichwas anderes:

[mm]x+2i(-\frac{1}{2}+\frac{3}{2}i)=-2i[/mm]
[mm]\Rightarrow x=-2i+i+3=3-i[/mm]

Diese Rechnung solltest Du am besten nochmal ausführlich nachvollziehen.

Gruß,
Christian

Bezug
                
Bezug
Komplexe Gleichung: Danke
Status: (Frage) beantwortet Status 
Datum: 23:24 So 06.03.2005
Autor: cagivamito

HI,

danke für die flotte Antwort. Habe das nochmals nachgerechnet und ich habe ein Vorziechen vertauscht, dein Ergebnis ist also richtig.

Jetzt habe ich noch eine Frage , wie die Aufgabe weiter zu lösen wäre.
Wenn ich jetzt die Werte in die Gaußsche Zahlenebene eintragen soll, muss ich dann einfach die Werte, die ich für x und y ausgerechnet habe einzeln in die Gaußsche Zahlenebene eintragen? Wie das geht wäre mir klar.

Gruß Jens

Bezug
                        
Bezug
Komplexe Gleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 20:58 Mo 07.03.2005
Autor: Max

Hallo Jens,

die komplexen Zahlen $a+bi$ werden in der []komplexen Zahleneebene als Punkte $(a|b)$ gekennzeichnet, wo bei die Realachse ($x$-Achse) die Einheit $1$ und die Imaginärachse ($y$-Achse) die Einheit $i$ hat. Üblicherweise zeichnet man dann $z=a+bi$ als Vektor (Pfeil) vom Ursprung bis zum Punkt $(a|b)$.

Gruß Brackhaus


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de