www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Komplexe Zahlen" - Komplexe Primfaktorzerlegung
Komplexe Primfaktorzerlegung < Komplexe Zahlen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Komplexe Primfaktorzerlegung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:27 Sa 21.02.2009
Autor: pehdr

Aufgabe
Geben Sie die komplexen Nullstellen des reellen Polynoms F = [mm] X^6 [/mm] - 64 in der Form x + y * i mit exakten Werten x, y € R sowie die reelle und komplexe Primfaktorzerlegung von F an.

Hallo,

Ich versuche die obige Übungsaufgabe zu lösen und habe dazu mit Hilfe der Formel

[mm] z_{k} [/mm] = [mm] \wurzel[n]{R} [/mm] * [mm] e^{j(\bruch{\alpha}{n} + k * \bruch{2 * \pi}{n})} [/mm]

die komplexen Nullstellen bestimmt. Hierfür habe ich dann raus:

x0 = [mm] \wurzel{3} [/mm] + 1*j
x1 = [mm] \wurzel{3} [/mm] - 1*j

x2 = 2*j
x3 = -2*j

x4 = [mm] -\wurzel{3} [/mm] + 1*j
x5 = [mm] -\wurzel{3} [/mm] - 1*j

OK soweit ist es ja auch klar, nur verstehe ich den letzten Teil der Aufgabe mit der Primfaktorzerlegung nicht. Was soll ich da jetzt genau tun und wie muss man da vorgehen? Kann mir Jemand wohl bitte einen Tip geben?


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Komplexe Primfaktorzerlegung: Antwort
Status: (Antwort) fertig Status 
Datum: 13:58 Sa 21.02.2009
Autor: angela.h.b.


> Geben Sie die komplexen Nullstellen des reellen Polynoms F
> = [mm]X^6[/mm] - 64 in der Form x + y * i mit exakten Werten x, y €
> R sowie die reelle und komplexe Primfaktorzerlegung von F
> an.
>  Hallo,
>  
> Ich versuche die obige Übungsaufgabe zu lösen und habe dazu
> mit Hilfe der Formel
>  
> [mm]z_{k}[/mm] = [mm]\wurzel[n]{R}[/mm] * [mm]e^{j(\bruch{\alpha}{n} + k * \bruch{2 * \pi}{n})}[/mm]
>  
> die komplexen Nullstellen bestimmt. Hierfür habe ich dann
> raus:
>  
> x0 = [mm]\wurzel{3}[/mm] + 1*j
>  x1 = [mm]\wurzel{3}[/mm] - 1*j
>  
> x2 = 2*j
>  x3 = -2*j
>  
> x4 = [mm]-\wurzel{3}[/mm] + 1*j
>  x5 = [mm]-\wurzel{3}[/mm] - 1*j

Hallo,

[willkommenmr].

Deine Wurzeln mußt Du nochmal überprüfen, da ist Dir etwas schiefgegangen - leider durchschaue ich nicht recht, welchen Fehler Du gemacht hast.

Wenn Du bei erneutem Rechnen wieder diese Wurzeln bekommst, rechne vor.

Stutzig sollte Dich eigentlich gemacht haben, daß bei Deinen Lösungen 2 und -2 gar nicht vorkommen.


Mal angenommen, Du hast die Nullstellen [mm] a_1, [/mm] ..., [mm] a_6 [/mm] gefunden, dann ist [mm] (x-a_1)*....*(x-a_6) [/mm] die komplexe Primfaktorzerlegung.

Die reelle bekommst Du, wenn Du jeweils zwei Klammern,  bei denen [mm] a_i [/mm] und [mm] a_j [/mm] konjugiert komplex sind, zusammenfaßt. Das ergibt ein reelles quadratisches polynom ohne reelle Nullstelle.

Gruß v. Angela

Bezug
                
Bezug
Komplexe Primfaktorzerlegung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:06 Sa 21.02.2009
Autor: pehdr

Hallo Angela,

Vielen Dank für die Antwort. Ja das 2 und -2 da nicht vorkamen, darüber hatte ich mich vorhin schon gewundert. Ich werde es nun nochmal erneut rechnen!

Ist Primfaktorzerlegung also das gleiche wie Linearfaktorzerlegung? Der Begriff hat mich verwirrt, denn in meinen Büchern ist immer nur von Linearfaktorzerlegung die Rede, aber zu Primfaktorzerlegung steht dort nichts!

Bezug
                
Bezug
Komplexe Primfaktorzerlegung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:44 Sa 21.02.2009
Autor: pehdr

Hallo,

Ich habe doch nocheinmal eine Frage und zwar verstehe ich noch nicht so ganz, wie ich denn nun mit Hilfe dieser Formel die Nullstellen bestimme. Mein Problem ist, was genau muss ich für [mm] \alpha [/mm] denn einsetzen?

In meinem Buch ist hierzu als Beispiel das Polynom [mm] x^3 [/mm] - 8 gegeben und dort wird für [mm] \alpha [/mm] dann [mm] \pi [/mm] eingesetzt...ich habe das bei der obigen Aufgabe genauso versucht, dann bekomme ich diese Lösungen...

Vielen Dank für eure Hilfe!

Bezug
                        
Bezug
Komplexe Primfaktorzerlegung: Antwort
Status: (Antwort) fertig Status 
Datum: 17:54 Sa 21.02.2009
Autor: angela.h.b.


> In meinem Buch ist hierzu als Beispiel das Polynom [mm]x^3[/mm] - 8
> gegeben und dort wird für [mm]\alpha[/mm] dann [mm]\pi[/mm] eingesetzt...

Hallo,

das kommt mir nicht richtig vor.  

Es ist doch hier der Winkel =0, denn 8=8*(1+i*0)= [mm] 8*(\cos [/mm] 0 + [mm] i*\sin [/mm] 0).

Man erhält die Lösungen

[mm] x_0=8^{1/3}(\cos [/mm] (0 + [mm] 0*\bruch{2\pi}{3}) [/mm] + [mm] i*\sin [/mm] (0 + [mm] 0*\bruch{2\pi}{3}) [/mm] )= 2

[mm] x_1=8^{1/3}(\cos [/mm] (0 + [mm] 1*\bruch{2\pi}{3}) [/mm] + [mm] i*\sin [/mm] (0 + [mm] 1*\bruch{2\pi}{3}) [/mm] )= 2( (-1/2) + [mm] i*\wurzel{3}/2 [/mm] )

[mm] x_2=8^{1/3}(\cos [/mm] (0 + [mm] 2*\bruch{2\pi}{3}) [/mm] + [mm] i*\sin [/mm] (0 + [mm] 2*\bruch{2\pi}{3}) [/mm] )= ...


Entsprechend dann bei Deiner Aufgabe.

Gruß v. Angela

Bezug
                                
Bezug
Komplexe Primfaktorzerlegung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:16 Sa 21.02.2009
Autor: pehdr

Hallo,

Ah Ok, Nun ist alles klar, vielen Dank!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de