Komplexe Zahl bestimmen < komplex < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 11:57 So 15.04.2007 | Autor: | auction |
Hallo Leute,
ich hab derzeit ein kleines Problem. Ich habe folgende Aufgabe:
|z| - z = 1 + 2i
Und soll die komplexe Zahl z bestimmen. Nur leider habe ich nicht den blassesten Schimmer, wie ich den Betrag weg bekomm. Ich weiß, dass |z| = [mm] \wurzel{x^2 + y^2} [/mm] ist, nur leider bringt mich das nicht weiter.
Könnt ihr mir nen kleinen Denkanstoss geben?
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 12:56 So 15.04.2007 | Autor: | unknown |
Hallo,
zwei Tipps kann ich Dir geben:
(a) Der Betrag von $z$ ist reell,
(b) und es gilt [mm] $|z|^2 [/mm] = [mm] z\,\overline{z}$.
[/mm]
Ich weiss nicht, ob es irgendwie eine elegantere Möglichkeit gibt, die Aufgabe zu lösen, aber mit den beiden Punkten oben habe ich es jedenfalls geschafft.
Ich hoffe, ich konnte helfen.
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 14:54 So 15.04.2007 | Autor: | auction |
Erst mal danke für deine Antwort, aber so richitg bringt mich das nciht weiter. ;)
also ich würde jetzt so fortfahren:
|z| - z = 1 + 2i
|z| = 1 + 2i + z
z [mm] \overline{z} [/mm] = (1 +2i [mm] +Z)^2
[/mm]
Wenn ich das nun alles ausmultipliziere, komm ich auf:
z [mm] \overline{z} [/mm] = [mm] z^{2} [/mm] + 2z + 4i + 4iz - 3
Weiteres Umformen bringt mich dann auch nicht weiter.
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 15:12 So 15.04.2007 | Autor: | unknown |
Hallo nochmal,
Du solltest vielleicht zunächst mal den Realteil und den Imaginärteil der ursprünglichen Gleichung getrennt betrachten:
[mm] $\mathrm{Re}\;(|z| [/mm] - z) = [mm] \mathrm{Re}\;|z| [/mm] - [mm] \mathrm{Re}\;z [/mm] = 1$
und
[mm] $\mathrm{Im}\;(|z| [/mm] - z) = [mm] \mathrm{Im}\;|z| [/mm] - [mm] \mathrm{Im}\;z [/mm] = 2i$.
Da der Betrag reell ist, folgt schonmal $z = x - 2i$ mit $x [mm] \in \IR$. [/mm] Wenn Du das jetzt einsetzt, müsste alles etwas einfacher werden.
Hoffe, Du kommst weiter.
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 21:47 Di 17.04.2007 | Autor: | auction |
Hallo,
wollte mich nochmal herzlich bei dir bedanken. Hast mir wirklich sehr weitergeholfen. z = 3/2 - 2i kam raus und stimmte sogar. ;)
vielen dank.
gruß auction
|
|
|
|