www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Komplexe Zahlen
Komplexe Zahlen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Komplexe Zahlen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:37 Do 13.11.2003
Autor: AstridW

Hallo!
Wir machen jetzt in Analysis Komplexe Zahlen und mit den anderen Aufgaben bin ich auch so einigermaßen zurechtgekommen, aber hier blicke ich noch nicht so recht durch:
Sei M ein beliebiger Kreis oder eine beliebige Gerade in C. Zeigen Sie, dass man M durch M={z є C; azž + 2Re(bz)+c=0}mit geeignet gewählten a,c є R, b є C und bb(quer)>ac  beschreiben kann.
Astrid

        
Bezug
Komplexe Zahlen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:02 Do 13.11.2003
Autor: Stefan

Hallo Astrid,

na, dass versuche ich es mal diesmal besser zu machen. ;-)

Betrachten wir doch zunächst mal komplexe Kreise. Ein Kreis lässt sich beschreiben durch die Gleichung:

[mm] |z-m|^2 = r^2[/mm]

mit [mm]m \in \IC[/mm] und [mm]r>0[/mm]. Es gilt aber:

[mm] |z-m|^2 = (z-m)\cdot (\bar{z}-\bar{m}) = z\bar{z} -z\bar{m} - m\bar{z} + m \bar{m} = 1\cdot z\bar{z} + 2Re(-\bar{m}z) + |m|^2[/mm]

Dann lässt sich der Kreis beschreiben durch

[mm] 1\cdot z\bar{z} + 2Re(-\bar{m}z) + |m|^2 - r^2 = 0[/mm].

Setzen wir nun [mm]a=1[/mm], [mm]b=-\bar{m}[/mm] und [mm]c=|m|^2 - r^2[/mm], so erhalten wir die gewünschte Darstellung.

Die Bedingung [mm]b\bar{b}>ac[/mm] ist dann wegen

[mm](-\bar{m})\cdot (-m) - 1\cdot (|m|^2-r^2) = r^2 >0[/mm]

erfüllt.

Eine komplexe Gerade lässt sich (Normalenform im [mm]\IR^2[/mm]!) wie folgt beschreiben:

[mm]a_1 Re(z) + a_2 Im(z) + a_3 = 0[/mm]

mit [mm]a_1>0[/mm] oder [mm]a_2>0[/mm], also: [mm]a_1^2 + a_2^2 >0[/mm].

Dies bedeutet:

[mm]a_1 \cdot \frac{1}{2}\, (z+\bar{z}) + a_2\cdot \frac{1}{2i}\, (z-\bar{z}) + a_3 = 0[/mm],

also:

[mm] \frac{1}{2} (a_1 - ia_2)\, z + \frac{1}{2} (a_1 + ia_2)\bar{z} + a_3 = 0.[/mm]

Noch weiter umgeschrieben erhalten wir:

[mm]2Re(\frac{1}{2} (a_1 - ia_2)z) + a_3 = 0.[/mm]

Setzen wir nun [mm]a=0[/mm], [mm]b=\frac{1}{2}(a_1 - ia_2)[/mm] und [mm]c=a_3[/mm], so erhalten wir die gewünschte Darstellung.

Die Bedingung [mm]b\bar{b}>ac[/mm] ist dann wegen

[mm]\frac{1}{4}\cdot (a_1^2 + a_2^2) > 0\ (s.o.) [/mm]

erfüllt.

Alles klar? :-)

Liebe Grüße
Stefan


Bezug
                
Bezug
Komplexe Zahlen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:48 Do 13.11.2003
Autor: AstridW

Vielen, vielen Dank!!!!!!
Ich hatte das Problem, die Geraden und die Kreise durch gleiche Unbekannte ausdrücken zu wollen und bin dann natürlich auf kein Ergebnis gekommen! Ich hätte mir glaube ich mal lieber noch mal die Aufgabenstellung durchgelesen, bevor ich losrechne!!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de