Komplexe Zahlen < Sonstiges < Hochschule < Mathe < Vorhilfe
|
Ich habe diese Frage auf keiner anderen Internetseite gestellt.
Hi,
ich bin gerade noch ganz am Anfang und knabbere die ganze Zeit an diesem Abschnitt:
Zitat:
(1) a+z=b
...
Mit [mm]a=(a_1,a_2)[/mm] und [mm]b=(b_1,b_2)[/mm] hat (1) offentsichtich genau die Kösung [mm]z=(b_1-a_1, b_2-a_2)[/mm]. Insbesondere hat die Gleichung a+z=a genau die Lösung (0,0).
Also ich verstehe schon warum die Lösung (0,0) ist.
Mein Problem ist das "offensichtliche" denn ich weiss nicht wieso in der Lösung ein Minus steht ich hätte dort ein Plus gehabt, auf Grund der Addition.
Und reicht das um zu zeigen, das (0,0) das neutrale Element der Addition von komplexen Zahlen ist oder muss da noch was kommen?
Grüße,
Mareike
|
|
|
|
> (1) a+z=b
> ...
> Mit [mm]a=(a_1,a_2)[/mm] und [mm]b=(b_1,b_2)[/mm] hat (1) offentsichtich
> genau die Kösung [mm]z=(b_1-a_1, b_2-a_2)[/mm]. Insbesondere hat die
> Gleichung a+z=a genau die Lösung (0,0).
Hallo,
leider verrätst Du nichts über den Zusammenhang, aber meine hellseherischen Fähiglkeitn sagen mir, daß irgendwo im Vorfeld für die Zahlenpaare eine Addition definiert wurde, so, daß komponentenweise addiert wird.
Dann löst [mm] z:=(b_1-a_1, b_2-a_2) [/mm] die gleichung, denn es ist
[mm] (a_1,a_2)+(b_1-a_1, b_2-a_2) =(a-_1+(b_1-a_1), a_2+(b_2-a_2))= (b_1,b_2)
[/mm]
Die Eindeutigkeit ergibt sich aus den Rechengesetzen für reelle Zahlen (Körper).
Gruß v. Angela
|
|
|
|