www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Sonstiges" - Komplexe Zahlen
Komplexe Zahlen < Sonstiges < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Komplexe Zahlen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:56 Di 13.04.2004
Autor: phymastudi

Wieder etwas zum Konbeln.
ICh hab eine Lösungsansatz, der aber sicher nicht ganz korrekt ist. Wie würdet ihr folgende Aufgabe lösen:

Komplexe Zahlen z lassen sich auf zwei verschiedene Weisen darstellen: z=x+iy (mit i=[mm]\wurzel{-1}[/mm]) und [mm] z=r*e^i*phi [/mm] .
Dabei gilt für den Betrag |z|=r die Beziehung: |z|=z*z^*=x²+y².
Zeige, dass folgende Beziehungen gelten:

[mm] e^i*phi= [/mm] cos(phi)+ i*sin(phi)
[mm] |e^i*phi|= [/mm] 1

Hilfrestellung: Verwende die Reihenentwicklung der auftretenden Funktionen!

Bin über jede Hiulfestellung dankbar!!!

Lieber Gruß von Björn

        
Bezug
Komplexe Zahlen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:13 Di 13.04.2004
Autor: Stefan

Hallo Björn!

Da gibt es nicht viel zu Knobeln, das sind Standardresultate.

Wir haben die folgenden Reihenentwicklungen:

[mm]e^z = \sum\limits_{n=0}^{+\infty} \frac{z^n}{n!}[/mm],

[mm]\sin(z) = \sum\limits_{n=0}^{+\infty} (-1)^n \frac{z^{2n+1}}{(2n+1)!}[/mm],

[mm]\cos(z) = \sum\limits_{n=0}^{+\infty} (-1)^n \frac{z^{2n}}{(2n)!}[/mm].

Damit folgt nun für [mm]z=i\varphi[/mm]:

[mm]e^{i\varphi} = \sum\limits_{n=0}^{+\infty} \frac{(i\varphi)^n}{n!}[/mm]

[mm] = \sum\limits_{n=0}^{+\infty} i^n \frac{\varphi^n}{n!}[/mm]

[mm] = \sum\limits_{n=0}^{+\infty} i^{2n} \frac{\varphi^{2n}}{(2n)!} + \sum\limits_{n=0}^{+\infty} i^{2n+1} \frac{\varphi^{2n+1}}{(2n+1)!} [/mm]

[mm] = \sum\limits_{n=0}^{+\infty} (-1)^n \frac{\varphi^{2n}}{(2n)!} + \sum\limits_{n=0}^{+\infty} i \cdot (-1)^n \frac{\varphi^{2n+1}}{(2n+1)!} [/mm]

[mm] = \sum\limits_{n=0}^{+\infty} (-1)^n \frac{\varphi^{2n}}{(2n)!} + i \sum\limits_{n=0}^{+\infty}(-1)^n \frac{\varphi^{2n+1}}{(2n+1)!} [/mm]

[mm]=cos(\varphi) + i \sin(\varphi)[/mm].

Die zweite Beziehung folgt sofort aus dem trigonometrischen Pythagoras:

[mm]|e^{i\varphi}| = |cos(\varphi) + i \sin(\varphi)| = \cos^2(\varphi) + \sin^2(\varphi) = 1[/mm].

Alles klar? :-)

Liebe Grüße
Stefan

Bezug
                
Bezug
Komplexe Zahlen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:17 Di 13.04.2004
Autor: phymastudi

Hallo Stefan!

Ich bin baff. Es fasziniert mich immer wieder, wie du so schnell eine Lösung parat hast. dein  mathematisches Wissen scheint unerschöpflich. Ich habe jetzt auch den Fehler in meinem Ansatz. Ich danke dir sehr!

Mfg Björn

Bezug
                        
Bezug
Komplexe Zahlen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:06 Di 13.04.2004
Autor: Stefan

Hallo Björn,

ich danke dir für deine netten Worte, aber leider trifft das nicht zu. Mein Wissen ist angesichts der Fülle mathematischer Aussagen und Teilgebiete leider trotz abgeschlossenen Mathestudiums verschwindend gering.  Aber man kann ja daran arbeiten...

Liebe Grüße
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de