www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Komplexe Zahlen" - Komplexe Zahlen
Komplexe Zahlen < Komplexe Zahlen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Komplexe Zahlen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:45 Mi 02.06.2004
Autor: Manuela

Seien b, c Element C. Bestimmen Sie den Real- und Imaginärteil der Lösung der Gleichung
[mm] z^2+bz+c=0 [/mm]

        
Bezug
Komplexe Zahlen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:46 Mi 02.06.2004
Autor: Stefan

Liebe Manuela!

> Seien b, c Element C. Bestimmen Sie den Real- und
> Imaginärteil der Lösung der Gleichung
>   [mm] z^2+bz+c=0 [/mm]

Zunächst einmal gilt auch im Komplexen die p-q-Formel, hier also:

[mm] $z_{1,2} [/mm] = [mm] -\frac{b}{2} [/mm] + [mm] \sqrt{\frac{b^2}{4} - c}$, [/mm]

wobei [mm] $\sqrt{\frac{b^2}{4}-c}$ [/mm] für die beiden möglichen komplexen Wurzeln steht.

Die Schwierigkeit besteht also darin, die beiden Wurzeln von

[mm] $\frac{b^2}{4}-c$ [/mm]

zu finden.

Wie aber findet man die Wurzel einer komplexen Zahl?


Satz:

Aus einer komplexen Zahl [mm] $\red{w=u+iv}$ [/mm] kann man genau zwei Quadratwurzeln ziehen. Insbesondere ist in [mm] $\IC$ [/mm] jede quadratische Gleichung [mm] $\red{z^2 + bz + c}$ [/mm] lösbar.


Beweis:

Wir schreiben $z=x+iy$. Dann gilt

[mm] $z^2 [/mm] = [mm] (x^2 [/mm] - [mm] y^2) [/mm]  + i2xy = u+iv = w$

genau dann, wenn

[mm] $x^2 [/mm] - [mm] y^2 [/mm] = u$,
$2xy = v$,

gilt. Das heißt aber:

[mm] $x^2 [/mm] -  [mm] \frac{v^2}{4x^2} [/mm] = u$

oder besser:

[mm] $x^4 [/mm]  - [mm] ux^2 [/mm]  = [mm] \frac{v^2}{4}$. [/mm]

Diese Gleichung hat eine reelle Lösung, nämlich:

$x= [mm] \frac{\sqrt{u + \sqrt{ u^2 + v^2}}}{\sqrt{2}}$. [/mm]

Man hat dann noch:

$y = [mm] \frac{v}{2x}$ [/mm]

und damit die erste Lösung [mm] $z_1=x+iy$ [/mm] der Gleichung [mm] $z^2=w$ [/mm] bestimmt.

Die zweite ist gegeben durch [mm] $z_2 [/mm] = - [mm] z_1$. [/mm]


Was musst du nun also tun?

Du musst erst einmal mit den gerade vorgestellten Formeln die beiden komplexen Wurzeln von

[mm] $\frac{b^2}{4}-c$ [/mm]

bestimmen.

Dann erhältst du die beiden Lösungen:

[mm] $z_{1,2} [/mm] = [mm] -\frac{b}{2} [/mm] + [mm] \sqrt{\frac{b^2}{4} - c}$. [/mm]

Diese kannst du nach Real- und Imaginärteil separieren.


Es mag sein, dass das auch schneller geht, nur sehe ich es gerade nicht.

Liebe Grüße
Stefan


  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de