www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Komplexe Zahlen" - Komplexe Zahlen
Komplexe Zahlen < Komplexe Zahlen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Komplexe Zahlen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:48 Fr 08.04.2011
Autor: Princess17

Aufgabe
Gegeben seien die komplexen Zahlen [mm]z_1 = -1 + i\wurzel{3}[/mm] und [mm]z_2 = e^{i*\pi/3}[/mm].

a) Stellen Sie [mm] z_1 [/mm] in der Form [mm]z_1 = re^{i\phi}, r > 0[/mm], sowie [mm] z_2 [/mm] in der Form [mm]z_2 = x + iy[/mm] dar.

b) Berechnen Sie die folgenden Zahlen: [mm] \left| z_1 \right|, \left| z_2 \right|, z_1^{\*}, Re(z_2), z_1*z_2, Re\left( \bruch{z_1}{z_2} \right), \left| z_1 + z_2 \right|^2. [/mm]

c) Skizzieren Sie [mm] z_1, z_2 [/mm] sowie die entsprechenden konjugiert komplexen Zahlen [mm] z_1^{\*}, z_2^{\*} [/mm] in der komplexen Zahlenebene.

Hallo an alle Leser,

auch hier (s. Thread "Vektorraum") habe ich das Problem, dass ich über komplexe Zahlen nur ein bisschen mehr als nichts weiß.

Was ich weiß:
[mm]\wurzel{-2} = \wurzel{-1 * 2} = \wurzel{2} * i[/mm]

Dann habe ich noch herausgefunden, dass man, um die komplex konjugierte Zahl zu berechnen, das Vorzeichen von Minus auf Plus umdrehen muss (?).
Was soll das bringen?

Bei a) weiß ich nicht, wie man so eine Umformung macht.
Bei b) habe ich auch keine Ahnung, wie man Beträge und Produkte von komplexen Zahlen ausrechnet. Was bedeutet denn Re? Ist das dieser Realteil?
Und bei c) habe ich gar keine Ahnung, was die wollen.

Wie beim Thread "Vektorraum" möchte ich die Aufgaben gerne selbst lösen, habe aber leider die theoretischen Grundlagen überhaupt nicht.

Ich hoffe, dass mir jemand erklären kann, wie man sowas rechnet, gerne an irgendeinem anderen Beispiel :)

Schöne Grüße,
Princess



        
Bezug
Komplexe Zahlen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:36 Fr 08.04.2011
Autor: MathePower

Hallo Princess17,

> Gegeben seien die komplexen Zahlen [mm]z_1 = -1 + i\wurzel{3}[/mm]
> und [mm]z_2 = e^{i*\pi/3}[/mm].
>  
> a) Stellen Sie [mm]z_1[/mm] in der Form [mm]z_1 = re^{i\phi}, r > 0[/mm],
> sowie [mm]z_2[/mm] in der Form [mm]z_2 = x + iy[/mm] dar.
>  
> b) Berechnen Sie die folgenden Zahlen: [mm]\left| z_1 \right|, \left| z_2 \right|, z_1^{\*}, Re(z_2), z_1*z_2, Re\left( \bruch{z_1}{z_2} \right), \left| z_1 + z_2 \right|^2.[/mm]
>  
> c) Skizzieren Sie [mm]z_1, z_2[/mm] sowie die entsprechenden
> konjugiert komplexen Zahlen [mm]z_1^{\*}, z_2^{\*}[/mm] in der
> komplexen Zahlenebene.
>  Hallo an alle Leser,
>  
> auch hier (s. Thread "Vektorraum") habe ich das Problem,
> dass ich über komplexe Zahlen nur ein bisschen mehr als
> nichts weiß.
>
> Was ich weiß:
>  [mm]\wurzel{-2} = \wurzel{-1 * 2} = \wurzel{2} * i[/mm]
>  
> Dann habe ich noch herausgefunden, dass man, um die komplex
> konjugierte Zahl zu berechnen, das Vorzeichen von Minus auf
> Plus umdrehen muss (?).
>  Was soll das bringen?


Das Vorzeichen des Imaginärteils der komplexen Zahl,
das ist der Teil, bei dem das "i" steht, wird umgedreht,
bzw. mit "-1" multipliziert.


>  
> Bei a) weiß ich nicht, wie man so eine Umformung macht.


Nun, eine komplexe Zahl z, hat eine Realteil (Re)
und einen Imaginärteil (Im).

[mm]z=a+b*i, \ a,b \in \IR[/mm]

Hier ist dann a der Realteil von z ([mm]\operaroname{Re} \ z[/mm])
und b der Imaginärteil von z ([mm]\operaroname{Im} \ z[/mm]).

Nun zur Umformung.

Nach der []eulerschen Identität  gilt:

[mm]z=a+b*i=re^{i\varphi}=r*\cos\left(\varphi\right)+i*r*\sin\left(\varphi\right)[/mm]

Daraus ergeben sich 2 Gleichungen:

[mm]a=r*\cos\left(\varphi\right)[/mm]

[mm]b=r*\sin\left(\varphi\right)[/mm]

Woraus sich dann r und [mm]\varphi[/mm] ergeben,
wobei [mm]r=\vmat{z}[/mm] ist.


>  Bei b) habe ich auch keine Ahnung, wie man Beträge und
> Produkte von komplexen Zahlen ausrechnet. Was bedeutet denn
> Re? Ist das dieser Realteil?


Ja, das ist der Realteil.



>  Und bei c) habe ich gar keine Ahnung, was die wollen.


Zeichne die komplexen Zahlen in ein kartesisches Koordinatensystem.

Hier entspricht die y-Achse dem Imaginärteil und die x-Achse dem
Realteil der komplexen Zahl-


>  
> Wie beim Thread "Vektorraum" möchte ich die Aufgaben gerne
> selbst lösen, habe aber leider die theoretischen
> Grundlagen überhaupt nicht.
>  
> Ich hoffe, dass mir jemand erklären kann, wie man sowas
> rechnet, gerne an irgendeinem anderen Beispiel :)
>  
> Schöne Grüße,
>  Princess
>  


Gruss
MathePower  

Bezug
                
Bezug
Komplexe Zahlen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:16 Fr 08.04.2011
Autor: Princess17

Hallo MathePower,

danke erstmal für Ihre Antwort. Es ist mir schon ein bisschen klarer.

Zu a):
Ich habe das soweit verstanden, aber wie kommt man darauf, dass [mm]r = \left| z \right|[/mm] ist? Ist das immer so, oder haben Sie das hier irgendwie berechnet?
Dann habe ich:
[mm]-1 = \wurzel{2}i * cos(\phi)[/mm]
[mm]\bruch{i}{\wurzel{2}} = cos (\phi)[/mm]
Wie komme ich jetzt auf [mm] \phi? [/mm]


Zu b):
Was ist der Sinn einer komplex konjugierten Zahl?
[mm]z_1^{\*} = -1 - i\wurzel{3}[/mm]
[mm]\left| z_1 \right| = \wurzel{a^2 + b^2} = \wurzel{1 + 3i^2} = \wurzel{-2} = \wurzel{2}*i[/mm]
Ist das richtig?

Ich würde mich über weitere Hilfe dabei sehr freuen!

Schöne Grüße,
Princess

Bezug
                        
Bezug
Komplexe Zahlen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:51 Fr 08.04.2011
Autor: MathePower

Hallo Princess17,

> Hallo MathePower,
>  
> danke erstmal für Ihre Antwort. Es ist mir schon ein
> bisschen klarer.
>
> Zu a):
>  Ich habe das soweit verstanden, aber wie kommt man darauf,
> dass [mm]r = \left| z \right|[/mm] ist? Ist das immer so, oder haben
> Sie das hier irgendwie berechnet?
>  Dann habe ich:
>  [mm]-1 = \wurzel{2}i * cos(\phi)[/mm]
>  [mm]\bruch{i}{\wurzel{2}} = cos (\phi)[/mm]
>  
> Wie komme ich jetzt auf [mm]\phi?[/mm]
>  


Der Betrag einer komplexen Zahl z=x+i*y ist: [mm]\vmat{z}=\wurzel{x^{2}+y^{2}}}[/mm]


>
> Zu b):
>  Was ist der Sinn einer komplex konjugierten Zahl?


Wenn Du im Nenner eines Bruches eine komplexe Zahl hast,
dann kannst Du durch Erweitern dieses Bruches mit der
konjugiert komplexen Zahl des Nenners erreichen, daß
der Nenner reell wird.


>  [mm]z_1^{\*} = -1 - i\wurzel{3}[/mm]
> [mm]\left| z_1 \right| = \wurzel{a^2 + b^2} = \wurzel{1 + 3i^2} = \wurzel{-2} = \wurzel{2}*i[/mm]
>  
> Ist das richtig?
>  


Nein, das ist nicht richtig.


> Ich würde mich über weitere Hilfe dabei sehr freuen!
>  
> Schöne Grüße,
>  Princess


Gruss
MathePower

Bezug
                                
Bezug
Komplexe Zahlen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:59 Fr 08.04.2011
Autor: Princess17

Hallo nochmal,

das i spielt also im Betrag keine Rolle. Dann so:

[mm]\left| z_1 \right| = \wurzel{1+3} = 2[/mm] ?

Vielleicht stehe ich auf dem Schlauch, aber ich habe immer noch nicht verstanden, warum bei a) [mm]\left| z \right| = r[/mm] ist und wie man [mm] \phi [/mm] aus den Formeln dann berechnet.

Danke nochmal,
Princess

Bezug
                                        
Bezug
Komplexe Zahlen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:33 Fr 08.04.2011
Autor: MathePower

Hallo Princess17,


> Hallo nochmal,
>  
> das i spielt also im Betrag keine Rolle. Dann so:
>  
> [mm]\left| z_1 \right| = \wurzel{1+3} = 2[/mm] ?

>


Ja. [ok]

  

> Vielleicht stehe ich auf dem Schlauch, aber ich habe immer
> noch nicht verstanden, warum bei a) [mm]\left| z \right| = r[/mm]
> ist und wie man [mm]\phi[/mm] aus den Formeln dann berechnet.


Für die komplexe Zahl z=a+bi hast Du
gemäß der eulerschen Identität die Gleichungen

[mm]a=r*\cos\left(\phi\right)[/mm]

[mm]b=r*\sin\left(\phi\right)[/mm]

Werden diese Gleichungn quadriert , so ergibt sich:

[mm]a^{2}+b^{2}=\left(r*\cos\left(\phi\right)\right)^{2}+\left(r*\sin\left(\phi\right)\right)^{2}=r^{2} \Rightarrow r= \ ... [/mm]

Division der beiden Gleichungen ergibt:

[mm]\bruch{b}{a}=\bruch{r*\sin\left(\phi\right)}{r*\cos\left(\phi\right)}=\bruch{\sin\left(\phi\right)}{\cos\left(\phi\right)}=\tan\left(\phi\right)\Rightarrow \phi= \ ...[/mm]


>  
> Danke nochmal,
>  Princess


Gruss
MathePower

Bezug
                                                
Bezug
Komplexe Zahlen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:21 Sa 09.04.2011
Autor: Princess17

Vielen, vielen Dank! Jetzt hat es "Klick" gemacht.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de