www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Komplexe Zahlen" - Komplexe Zahlen Menge
Komplexe Zahlen Menge < Komplexe Zahlen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Komplexe Zahlen Menge: Idee
Status: (Frage) beantwortet Status 
Datum: 18:57 So 10.01.2021
Autor: YorkNw

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo, wir haben folgende Frage gestellt bekommen und ich stehe momentan ziemlich auf dem Schlau bzw. weiß nicht wie und was ich rechnen soll...

Skizzieren Sie die folgenden Teilmengen von C in der Gauß’schen Zahlenebene:

a) M1 := { z ∈ C | 􏰅􏰅Im [mm] (􏰁z^2) [/mm] 􏰂≤ 2 } 􏰅
b) M2 := { z ∈ C \ {0} | 􏰅Re (1:z) =1 }
􏰊􏰅􏰋
Hinweis: Ein Kreis um den Mittelpunkt (a, b) mit Radius r kann in der Ebene des R2 mit der Gleichung [mm] (x−a)^2 [/mm] + [mm] (y−b)^2 [/mm] = [mm] r^2 [/mm] beschrieben werden.

Danke im Voraus!!! :)

        
Bezug
Komplexe Zahlen Menge: Antwort
Status: (Antwort) fertig Status 
Datum: 20:08 So 10.01.2021
Autor: statler

Auch hallo, welcome to the club!

In Koordinatenform ist ja z = a + bi, damit kann man [mm] z^2 [/mm] (1:z) ausrechnen und [mm] Im(z^2) [/mm] (Re(1:z)) bestimmen. Die Ungleichung (Gleichung) gibt dann eine Bedingung an a und b, und das kann man in der Gaußschen Zahlenebene visualisieren. Soviel zur allgemeinen Herangehensweise.

Was deine komischen Symbole im Text bedeuten, erschließt sich mir nicht.

Gruß Dieter

Bezug
        
Bezug
Komplexe Zahlen Menge: Antwort
Status: (Antwort) fertig Status 
Datum: 08:39 Mo 11.01.2021
Autor: fred97


> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
> Hallo, wir haben folgende Frage gestellt bekommen und ich
> stehe momentan ziemlich auf dem Schlau bzw. weiß nicht wie
> und was ich rechnen soll...
>  
> Skizzieren Sie die folgenden Teilmengen von C in der
> Gauß’schen Zahlenebene:
>  
> a) M1 := [mm]{z∈C|􏰅􏰅Im(􏰁z^2)􏰂≤2}[/mm] 􏰅


Das lautet wohl so:

[mm] M_1=\{z \in \IC: Im(z^2) \le 2\}.$ [/mm]


>  b) M2 := [mm]{z∈C\{0}|􏰅Re (1:z) =1}[/mm]

Und das so:

[mm] M_2=\{z \in \IC: Re(1/z) =1\}.$ [/mm]


>  􏰊􏰅􏰋
>  Hinweis: Ein Kreis um den Mittelpunkt (a, b) mit Radius r
> kann in der Ebene des R2 mit der Gleichung [mm](x−a)^2 +(y−b)^2 =r^2[/mm]

Auch da ist etwas schief gegangen: korrekt: [mm] (x-a)^2 +(y-b)^2 =r^2 [/mm]


> beschrieben werden.
>  
> Danke im Voraus!!! :)


Im Folgenden sei stets $z=x+iy$ mit $x,y [mm] \in \IR.$ [/mm]

Zu [mm] M_1: [/mm] Es ist [mm] z^2=x^2-y^2+2ixy, [/mm] also [mm] Im(z^2) [/mm] =2xy.

Damit:

    [mm] $Im(z^2) \le [/mm] 2 [mm] \gdw [/mm] xy [mm] \le [/mm] 1.$

Kommst Du damit weiter ?

Zu [mm] M_2: [/mm]  Es ist $1/z= [mm] \frac{\overline{z}}{z \overline{z}}= \frac{x-iy}{x^2+y^2}$, [/mm] also

    $Re(1/z)= [mm] \frac{x}{x^2+y^2} [/mm] =1 [mm] \gdw x^2+y^2-x=0.$ [/mm]

Jetzt Du.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de