www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Komplexe Zahlen" - Komplexe Zahlen und Abbildung
Komplexe Zahlen und Abbildung < Komplexe Zahlen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Komplexe Zahlen und Abbildung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:58 Fr 13.11.2015
Autor: DrinkTea

Hallo :)

Ich habe diesmal eine komplexe Zahlen - Aufgabe.
Ich soll zeigen, dass eine Multiplikation als eine Abbildung  [mm] R^{2} [/mm] -> [mm] R^{2} [/mm] geschrieben werden kann und ich die Jacobi-Matrix berechnen muss.

Meine Zahlen:
x + iy mit 3 + 4i.

Ich habe erst ausmultipliziert. Es kam raus:

(3x-4y) + (4x+3y)*i.

Das habe ich in eine Abbildung gepackt:

[mm] f\vektor{x \\ y} [/mm] = [mm] \vektor{(3x-4y) \\ (4x+3y)*i} [/mm]

Also ich weiss nicht recht, aber (4x+3y)*i kann man ja auch als reele Zahl sehen.  Ich komme aber mit dem [mm] R^{2} [/mm] -> [mm] R^{2} [/mm] so durcheinander. Ist das in meiner aufgabe nicht : [mm] R^{2} [/mm] -> C ? Und ich bin schon so verwirrt.  

Die Jacobi-Matrix berechnen ist dann kein Problem mehr. Ich möchte meinen ersten Schritt nochmals erklärt, oder korrigiert haben :)

Danke Euch!

        
Bezug
Komplexe Zahlen und Abbildung: Antwort
Status: (Antwort) fertig Status 
Datum: 12:13 Fr 13.11.2015
Autor: fred97


> Hallo :)
>  
> Ich habe diesmal eine komplexe Zahlen - Aufgabe.
>  Ich soll zeigen, dass eine Multiplikation als eine
> Abbildung  [mm]R^{2}[/mm] -> [mm]R^{2}[/mm] geschrieben werden kann und ich
> die Jacobi-Matrix berechnen muss.
>  
> Meine Zahlen:
>  x + iy mit 3 + 4i.
>  
> Ich habe erst ausmultipliziert. Es kam raus:
>
> (3x-4y) + (4x+3y)*i.
>  
> Das habe ich in eine Abbildung gepackt:
>
> [mm]f\vektor{x \\ y}[/mm] = [mm]\vektor{(3x-4y) \\ (4x+3y)*i}[/mm]

Nee, so stimmt das nicht.


>  
> Also ich weiss nicht recht, aber (4x+3y)*i kann man ja auch
> als reele Zahl sehen.

Nein, im Falle 4x+3y [mm] \ne [/mm] 0 ist das keine reelle Zahl.



>  Ich komme aber mit dem [mm]R^{2}[/mm] ->

> [mm]R^{2}[/mm] so durcheinander. Ist das in meiner aufgabe nicht :
> [mm]R^{2}[/mm] -> C ? Und ich bin schon so verwirrt.  
>
> Die Jacobi-Matrix berechnen ist dann kein Problem mehr. Ich
> möchte meinen ersten Schritt nochmals erklärt, oder
> korrigiert haben :)


Vorweg: sind a,b [mm] \in \IR, [/mm] so kannst Du die komplexe Zahl a+ib mit  [mm] \vektor{a \\ b} \in \IR^2 [/mm] identifizieren.

In diesem Sinne lautet dann die gesuchte Abbildung  f dann so:



$ [mm] f(\vektor{x \\ y}) [/mm] = [mm] \vektor{3x-4y \\ 4x+3y} [/mm] $

FRED

>
> Danke Euch!


Bezug
                
Bezug
Komplexe Zahlen und Abbildung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:36 Fr 13.11.2015
Autor: DrinkTea

Danke Dir Fred für die flotte Antwort!

In der Aufgabe steht:

... komplexen Zahl  x+iy  mit  3+4i  Element  C...  Kann ich die dann auch als reele Zahlen fassen? Also die 3 und die 4. Obwohl die an i hängen?

Aber wo Du mir das erklärst, mit der reelen Zahl... Stimmt ungleich Null...


Jetzt wenn ich so schreibe, wird's mir doch klarer. Ich glaube ich kapier's. Aber ich warte auf Deine Antwort ;)




Bezug
                        
Bezug
Komplexe Zahlen und Abbildung: Antwort
Status: (Antwort) fertig Status 
Datum: 12:47 Fr 13.11.2015
Autor: fred97

In 3+4i sind 3 und 4 natürlich reelle Zahlen ....

FRED

Bezug
                                
Bezug
Komplexe Zahlen und Abbildung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:01 Fr 13.11.2015
Autor: DrinkTea

Okay, danke. Richtig gedacht ;)

Vielen Dank für die Hilfe!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de