www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Komplexe Analysis" - Komplexes Kurvenintegral
Komplexes Kurvenintegral < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Komplexes Kurvenintegral: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 01:11 So 18.11.2007
Autor: Mr.Teutone

Aufgabe
Berechnen Sie folgende Integrale:
a) [mm] \integral_{C}^{}{\bruch{dz}{z^2-4}} [/mm] , wobei C der mathematisch positiv orientierte Kreis |z-2|=2 sei.

Tach Leute

Ich hab für obige Aufgabe zwei verschiedene Ansätze, von denen mindestens einer nicht stimmen kann...

Zunächst will ich folgende Parametrisierung der Kurve C benutzen: [mm] z(t)=2e^{it}+2 [/mm] mit [mm] t\in [0,2\pi]. [/mm]

1. Ansatz:

[mm] \integral_{C}^{}{\bruch{dz}{z^2-4}}=\integral_{C}^{}{\bruch{dz}{(z+2)(z-2)}}=\integral_{0}^{2\pi}{\bruch{2ie^{it}}{(2e^{it}+4)2e^{it}}dt}=\integral_{0}^{2\pi}{\bruch{i}{(2e^{it}+4)}dt}=\ldots [/mm]

2. Ansatz:

[mm] \integral_{C}^{}{\bruch{dz}{z^2-4}}=\bruch{1}{4}\integral_{C}^{}{\bruch{1}{z-2}-\bruch{1}{z+2}dz}=\bruch{1}{4}\integral_{C}^{}{\bruch{1}{z-2}dz}-\bruch{1}{4}\integral_{C}^{}{\bruch{1}{z+2}dz}= [/mm]
nach Integralsatz von Cauchy:
[mm] =\bruch{1}{4}\integral_{C}^{}{\bruch{1}{z-2}dz}=\bruch{1}{4}\integral_{0}^{2\pi}{\bruch{2ie^{it}}{2e^{it}}dt}=\bruch{1}{4}\integral_{0}^{2\pi}{i dt}=\ldots [/mm]

Irgendwie stimmt das alles nicht so wirklich, hab ich das Gefühl. Ich wäre dankbar, wenn mir einer nen Tipp geben kann.

        
Bezug
Komplexes Kurvenintegral: Tipp
Status: (Antwort) fertig Status 
Datum: 01:18 So 18.11.2007
Autor: generation...x

Da die zu integrierende Funktion im Inneren des Kreises (Skizze?) eine Polstelle hat, lautet der Tipp: []Residuensatz.

Bezug
                
Bezug
Komplexes Kurvenintegral: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 11:47 So 18.11.2007
Autor: Mr.Teutone

Also dass die Funktion im Inneren der Kreisscheibe eine Polstelle hat, ist mir klar. Mit dem Residuensatz kann ich jetzt wenig anfangen. Ich bin der Meinung, das Kurvenintegral muss sich auch ohne Kenntnis von diesem berechnen lassen. Wie schauts mit meinen beiden Ansätzen aus? Komm ich da weiter oder wieso sind sie falsch?

Vielen Dank für weitere Antworten.

Bezug
                        
Bezug
Komplexes Kurvenintegral: Antwort
Status: (Antwort) fertig Status 
Datum: 15:03 So 18.11.2007
Autor: generation...x

Also, wenn ich das im Kopf richtig überschlagen habe, dann kommst du mit dem Residuensatz auf das gleiche Ergebnis wie in deinem 2ten Ansatz...

Bezug
                        
Bezug
Komplexes Kurvenintegral: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:06 Di 20.11.2007
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
        
Bezug
Komplexes Kurvenintegral: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 02:06 Di 20.11.2007
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de